
Arun Radhakrishnan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5873010/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Measuring and Manipulating Membrane Cholesterol for the Study of Hedgehog Signaling. Methods in Molecular Biology, 2022, 2374, 73-87.	0.4	1
2	The use of anthrolysin O and ostreolysin A to study cholesterol in cell membranes. Methods in Enzymology, 2021, 649, 543-566.	0.4	10
3	Scap structures highlight key role for rotation of intertwined luminal loops in cholesterol sensing. Cell, 2021, 184, 3689-3701.e22.	13.5	18
4	Patched 1 reduces the accessibility of cholesterol in the outer leaflet of membranes. ELife, 2021, 10, .	2.8	34
5	Cholesterol access in cellular membranes controls Hedgehog signaling. Nature Chemical Biology, 2020, 16, 1303-1313.	3.9	90
6	Identification of a degradation signal at the carboxy terminus of SREBP2: A new role for this domain in cholesterol homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28080-28091.	3.3	21
7	Accessible cholesterol is localized in bacterial plasma membrane protrusions. Journal of Lipid Research, 2020, 61, 1538.	2.0	5
8	Cholesterol Stabilizes TAZ in Hepatocytes to Promote Experimental Non-alcoholic Steatohepatitis. Cell Metabolism, 2020, 31, 969-986.e7.	7.2	117
9	Oxysterols provide innate immunity to bacterial infection by mobilizing cell surface accessible cholesterol. Nature Microbiology, 2020, 5, 929-942.	5.9	96
10	Accessibility of cholesterol at cell surfaces. Journal of Lipid Research, 2020, 61, 1307.	2.0	4
11	Ostreolysin A and anthrolysin O use different mechanisms to control movement of cholesterol from the plasma membrane to the endoplasmic reticulum. Journal of Biological Chemistry, 2019, 294, 17289-17300.	1.6	27
12	Molecular Discrimination between Two Conformations of Sphingomyelin in Plasma Membranes. Cell, 2019, 176, 1040-1053.e17.	13.5	109
13	Monitoring and Modulating Intracellular Cholesterol Trafficking Using ALOD4, a Cholesterol-Binding Protein. Methods in Molecular Biology, 2019, 1949, 153-163.	0.4	26
14	Cholesterol accessibility at the ciliary membrane controls hedgehog signaling. ELife, 2019, 8, .	2.8	97
15	Retrospective on Cholesterol Homeostasis: The Central Role of Scap. Annual Review of Biochemistry, 2018, 87, 783-807.	5.0	329
16	Sphingomyelin holesterol Complexes In Plasma Membranes. FASEB Journal, 2018, 32, 671.1.	0.2	0
17	Cholesterol-induced conformational changes in the sterol-sensing domain of the Scap protein suggest feedback mechanism to control cholesterol synthesis. Journal of Biological Chemistry, 2017, 292, 8729-8737.	1.6	32
18	Continuous transport of a small fraction of plasma membrane cholesterol to endoplasmic reticulum regulates total cellular cholesterol. El ife. 2017. 6.	2.8	123

Arun Radhakrishnan

#	Article	IF	CITATIONS
19	Variability of cholesterol accessibility in human red blood cells measured using a bacterial cholesterol-binding toxin. ELife, 2017, 6, .	2.8	44
20	Direct Demonstration That Loop1 of Scap Binds to Loop7. Journal of Biological Chemistry, 2016, 291, 12888-12896.	1.6	17
21	Crystal structure of a mycobacterial Insig homolog provides insight into how these sensors monitor sterol levels. Science, 2015, 349, 187-191.	6.0	32
22	Switch-like Responses of Two Cholesterol Sensors Do Not Require Protein Oligomerization in Membranes. Biophysical Journal, 2015, 108, 1459-1469.	0.2	64
23	Three pools of plasma membrane cholesterol and their relation to cholesterol homeostasis. ELife, 2014, 3, .	2.8	281
24	Use of mutant ¹²⁵ I-Perfringolysin O to probe transport and organization of cholesterol in membranes of animal cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10580-10585.	3.3	108
25	The SREBP Pathway. , 2010, , 2505-2510.		1
26	Accessibility of Cholesterol in Endoplasmic Reticulum Membranes and Activation of SREBP-2 Switch Abruptly at a Common Cholesterol Threshold. Journal of Biological Chemistry, 2010, 285, 29480-29490.	1.6	95
27	Phase Separations in Binary and Ternary Cholesterol-Phospholipid Mixtures. Biophysical Journal, 2010, 98, L41-L43.	0.2	13
28	Cyclodextrin overcomes deficient lysosome-to-endoplasmic reticulum transport of cholesterol in Niemann-Pick type C cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19316-19321.	3.3	160
29	Molecular Motion at the Critical Point in Lipid Membranes. Biophysical Journal, 2008, 95, L22-L24.	0.2	5
30	Switch-like Control of SREBP-2 Transport Triggered by Small Changes in ER Cholesterol: A Delicate Balance. Cell Metabolism, 2008, 8, 512-521.	7.2	464
31	Purified NPC1 Protein. Journal of Biological Chemistry, 2008, 283, 1052-1063.	1.6	191
32	Purified NPC1 Protein. Journal of Biological Chemistry, 2008, 283, 1064-1075.	1.6	204
33	NPC2 facilitates bidirectional transfer of cholesterol between NPC1 and lipid bilayers, a step in cholesterol egress from lysosomes. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15287-15292.	3.3	402
34	Composition fluctuations, chemical exchange, and nuclear relaxation in membranes containing cholesterol. Journal of Chemical Physics, 2007, 126, 185101.	1.2	24
35	Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: Oxysterols block transport by binding to Insig. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6511-6518.	3.3	492
36	Theory of the deuterium NMR of sterol-phospholipid membranes. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1184-1189.	3.3	43

#	ARTICLE	IF	CITATIONS
37	Condensed complexes in vesicles containing cholesterol and phospholipids. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12662-12666.	3.3	141
38	Intramembrane aspartic acid in SCAP protein governs cholesterol-induced conformational change. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3242-3247.	3.3	40
39	Direct Binding of Cholesterol to the Purified Membrane Region of SCAP. Molecular Cell, 2004, 15, 259-268.	4.5	293
40	Condensed complexes of cholesterol and phospholipids. Biochimica Et Biophysica Acta - Biomembranes, 2003, 1610, 159-173.	1.4	376
41	Critical points in charged membranes containing cholesterol. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 13391-13396.	3.3	19
42	Thermal Dissociation of Condensed Complexes of Cholesterol and Phospholipid. Journal of Physical Chemistry B, 2002, 106, 4755-4762.	1.2	28
43	Two fatty acids can replace one phospholipid in condensed complexes with cholesterol. Biochimica Et Biophysica Acta - Biomembranes, 2002, 1564, 1-4.	1.4	14
44	Stoichiometry of cholesterol–sphingomyelin condensed complexes in monolayers. Biochimica Et Biophysica Acta - Biomembranes, 2001, 1511, 1-6.	1.4	59
45	Condensed complexes, rafts, and the chemical activity of cholesterol in membranes. Proceedings of the United States of America, 2000, 97, 12422-12427.	3.3	242
46	Electric field effect on cholesterol- phospholipid complexes. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 1073-1078.	3.3	36
47	Chemical Activity of Cholesterol in Membranesâ€. Biochemistry, 2000, 39, 8119-8124.	1.2	157
48	Saturated Phospholipids with High Melting Temperatures Form Complexes with Cholesterol in Monolayers. Journal of Physical Chemistry B, 2000, 104, 7522-7527.	1.2	75
49	Ultra-high throughput rotary capillary array electrophoresis scanner for fluorescent DNA sequencing and analysis. Electrophoresis, 1999, 20, 1508-1517.	1.3	72
50	Condensed Complexes of Cholesterol and Phospholipids. Biophysical Journal, 1999, 77, 1507-1517.	0.2	221
51	Cholesterolâ~Phospholipid Complexes in Membranes. Journal of the American Chemical Society, 1999, 121, 486-487.	6.6	103
52	Ultra-high throughput rotary capillary array electrophoresis scanner for fluorescent DNA sequencing and analysis. , 1999, 20, 1508.		3
53	DNA sequencing using a four-color confocal fluorescence capillary array scanner. Electrophoresis, 1996, 17, 1852-1859.	1.3	107