Adam E Locke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/587301/publications.pdf

Version: 2024-02-01

65 papers 18,627 citations

38 h-index 70 g-index

85 all docs

85 docs citations

85 times ranked 29044 citing authors

#	Article	IF	CITATIONS
1	Genetic studies of body mass index yield new insights for obesity biology. Nature, 2015, 518, 197-206.	27.8	3,823
2	Next-generation genotype imputation service and methods. Nature Genetics, 2016, 48, 1284-1287.	21.4	2,828
3	Defining the role of common variation in the genomic and biological architecture of adult human height. Nature Genetics, 2014, 46, 1173-1186.	21.4	1,818
4	Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nature Genetics, 2018, 50, 1505-1513.	21.4	1,331
5	New genetic loci link adipose and insulin biology to body fat distribution. Nature, 2015, 518, 187-196.	27.8	1,328
6	The genetic architecture of type 2 diabetes. Nature, 2016, 536, 41-47.	27.8	952
7	Rare and low-frequency coding variants alter human adult height. Nature, 2017, 542, 186-190.	27.8	544
8	Quality control and conduct of genome-wide association meta-analyses. Nature Protocols, 2014, 9, 1192-1212.	12.0	398
9	Exome sequencing and analysis of 454,787 UK Biobank participants. Nature, 2021, 599, 628-634.	27.8	377
10	Sex-stratified Genome-wide Association Studies Including 270,000 Individuals Show Sexual Dimorphism in Genetic Loci for Anthropometric Traits. PLoS Genetics, 2013, 9, e1003500.	3.5	371
11	Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci. Nature Genetics, 2015, 47, 1415-1425.	21.4	365
12	The power of genetic diversity in genome-wide association studies of lipids. Nature, 2021, 600, 675-679.	27.8	353
13	Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity. Nature Genetics, 2018, 50, 26-41.	21.4	286
14	Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation. Nature Genetics, 2022, 54, 560-572.	21.4	250
15	New loci for body fat percentage reveal link between adiposity and cardiometabolic disease risk. Nature Communications, 2016, 7, 10495.	12.8	245
16	Ethnicity, sex, and the incidence of congenital heart defects: a report from the National Down Syndrome Project. Genetics in Medicine, 2008, 10, 173-180.	2.4	232
17	Population genetic differentiation of height and body mass index across Europe. Nature Genetics, 2015, 47, 1357-1362.	21.4	227
18	Whole-Exome Sequencing Identifies Rare and Low-Frequency Coding Variants Associated with LDL Cholesterol. American Journal of Human Genetics, 2014, 94, 233-245.	6.2	193

#	Article	IF	Citations
19	Deciphering osteoarthritis genetics across 826,690 individuals from 9 populations. Cell, 2021, 184, 4784-4818.e17.	28.9	188
20	Exome sequencing of Finnish isolates enhances rare-variant association power. Nature, 2019, 572, 323-328.	27.8	161
21	Whole-Genome Sequencing Coupled to Imputation Discovers Genetic Signals for Anthropometric Traits. American Journal of Human Genetics, 2017, 100, 865-884.	6.2	131
22	Sequencing of 640,000 exomes identifies <i>GPR75</i> variants associated with protection from obesity. Science, 2021, 373, .	12.6	130
23	Extremely rare variants reveal patterns of germline mutation rate heterogeneity in humans. Nature Communications, 2018, 9, 3753.	12.8	121
24	Quantifying the Impact of Rare and Ultra-rare Coding Variation across the Phenotypic Spectrum. American Journal of Human Genetics, 2018, 102, 1204-1211.	6.2	102
25	An Excess of Deleterious Variants in VEGF-A Pathway Genes in Down-Syndrome-Associated Atrioventricular Septal Defects. American Journal of Human Genetics, 2012, 91, 646-659.	6.2	99
26	Exome Sequencing of Familial Bipolar Disorder. JAMA Psychiatry, 2016, 73, 590.	11.0	97
27	Genome-wide analysis provides genetic evidence that ACE2 influences COVID-19 risk and yields risk scores associated with severe disease. Nature Genetics, 2022, 54, 382-392.	21.4	97
28	Identification and Functional Characterization of G6PC2 Coding Variants Influencing Glycemic Traits Define an Effector Transcript at the G6PC2-ABCB11 Locus. PLoS Genetics, 2015, 11, e1004876.	3.5	95
29	Protein-coding variants implicate novel genes related to lipid homeostasis contributing to body-fat distribution. Nature Genetics, 2019, 51, 452-469.	21.4	89
30	Validity of Self-Reported Sunscreen Use by Parents, Children, and Lifeguards. American Journal of Preventive Medicine, 2009, 36, 63-69.	3.0	85
31	Pan-ancestry exome-wide association analyses of COVID-19 outcomes in 586,157 individuals. American Journal of Human Genetics, 2021, 108, 1350-1355.	6.2	72
32	A multiancestry genome-wide association study of unexplained chronic ALT elevation as a proxy for nonalcoholic fatty liver disease with histological and radiological validation. Nature Genetics, 2022, 54, 761-771.	21.4	68
33	Mendelian Randomization Study of Body Mass Index and Colorectal Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 1024-1031.	2.5	67
34	Variation in folate pathway genes contributes to risk of congenital heart defects among individuals with Down syndrome. Genetic Epidemiology, 2010, 34, 613-623.	1.3	66
35	Exome sequencing in bipolar disorder identifies AKAP11 as a risk gene shared with schizophrenia. Nature Genetics, 2022, 54, 541-547.	21.4	65
36	Genome-wide association studies of metabolites in Finnish men identify disease-relevant loci. Nature Communications, 2022, 13, 1644.	12.8	63

#	Article	IF	Citations
37	Gene-based meta-analysis of genome-wide association studies implicates new loci involved in obesity. Human Molecular Genetics, 2015, 24, 6849-6860.	2.9	55
38	Interaction between the <i>FTO</i> gene, body mass index and depression: meta-analysis of 13701 individuals. British Journal of Psychiatry, 2017, 211, 70-76.	2.8	49
39	Common, low-frequency, and rare genetic variants associated with lipoprotein subclasses and triglyceride measures in Finnish men from the METSIM study. PLoS Genetics, 2017, 13, e1007079.	3.5	49
40	A Low-Frequency Inactivating <i>AKT2</i> Variant Enriched in the Finnish Population Is Associated With Fasting Insulin Levels and Type 2 Diabetes Risk. Diabetes, 2017, 66, 2019-2032.	0.6	47
41	Adipose Tissue Gene Expression Associations Reveal Hundreds of Candidate Genes for Cardiometabolic Traits. American Journal of Human Genetics, 2019, 105, 773-787.	6.2	45
42	Lack of maternal folic acid supplementation is associated with heart defects in Down syndrome: A report from the National Down Syndrome Project. Birth Defects Research Part A: Clinical and Molecular Teratology, 2011, 91, 885-893.	1.6	43
43	Colocalization of GWAS and eQTL signals at loci with multiple signals identifies additional candidate genes for body fat distribution. Human Molecular Genetics, 2019, 28, 4161-4172.	2.9	41
44	Altered patterns of multiple recombinant events are associated with nondisjunction of chromosome 21. Human Genetics, 2012, 131, 1039-1046.	3.8	39
45	Sequence data and association statistics from 12,940 type 2 diabetes cases and controls. Scientific Data, 2017, 4, 170179.	5. 3	31
46	Identification of seven novel loci associated with amino acid levels using single-variant and gene-based tests in 8545 Finnish men from the METSIM study. Human Molecular Genetics, 2018, 27, 1664-1674.	2.9	30
47	High heritability of ascending aortic diameter and trans-ancestry prediction of thoracic aortic disease. Nature Genetics, 2022, 54, 772-782.	21.4	29
48	Genome-Wide Association Study of Down Syndrome-Associated Atrioventricular Septal Defects. G3: Genes, Genomes, Genetics, 2015, 5, 1961-1971.	1.8	28
49	Evaluating the contribution of rare variants to type 2 diabetes and related traits using pedigrees. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 379-384.	7.1	28
50	In search of rare variants: Preliminary results from whole genome sequencing of 1,325 individuals with psychophysiological endophenotypes. Psychophysiology, 2014, 51, 1309-1320.	2.4	25
51	Heterozygous variants of <i>CLPB</i> are a cause of severe congenital neutropenia. Blood, 2022, 139, 779-791.	1.4	25
52	Gene-level analysis of rare variants in 379,066 whole exome sequences identifies an association of GIGYF1 loss of function with type 2 diabetes. Scientific Reports, 2021, 11, 21565.	3.3	25
53	Simulation of Finnish Population History, Guided by Empirical Genetic Data, to Assess Power of Rare-Variant Tests in Finland. American Journal of Human Genetics, 2014, 94, 710-720.	6.2	24
54	Contribution of copy-number variation to Down syndrome–associated atrioventricular septal defects. Genetics in Medicine, 2015, 17, 554-560.	2.4	24

#	Article	IF	CITATIONS
55	Association of structural variation with cardiometabolic traits in Finns. American Journal of Human Genetics, 2021, 108, 583-596.	6.2	22
56	Transancestral fine-mapping of four type 2 diabetes susceptibility loci highlights potential causal regulatory mechanisms. Human Molecular Genetics, 2016, 25, 2070-2081.	2.9	21
57	Across-cohort QC analyses of GWAS summary statistics from complex traits. European Journal of Human Genetics, 2017, 25, 137-146.	2.8	18
58	Combining Microarrayâ€based Genomic Selection (MGS) with the Illumina Genome Analyzer Platform to Sequence Diploid Target Regions. Annals of Human Genetics, 2009, 73, 502-513.	0.8	16
59	Investigating rare pathogenic/likely pathogenic exonic variation in bipolar disorder. Molecular Psychiatry, 2021, 26, 5239-5250.	7.9	15
60	A novel procedure for genotyping of single nucleotide polymorphisms in trisomy with genomic DNA and the invader assay. Nucleic Acids Research, 2008, 36, e145-e145.	14.5	14
61	Genetic and functional evidence links a missense variant in <i>B4GALT1</i> to lower LDL and fibrinogen. Science, 2021, 374, 1221-1227.	12.6	14
62	Adiponectin GWAS loci harboring extensive allelic heterogeneity exhibit distinct molecular consequences. PLoS Genetics, 2020, 16, e1009019.	3.5	11
63	Mitochondrial genome copy number measured by DNA sequencing in human blood is strongly associated with metabolic traits via cell-type composition differences. Human Genomics, 2021, 15, 34.	2.9	7
64	Whole Exome Sequencing Enhanced Imputation Identifies 85 Metabolite Associations in the Alpine CHRIS Cohort. Metabolites, 2022, 12, 604.	2.9	6
65	Abstract 050: Meta-analysis of Genetic Associations in up to 339,224 Individuals Identify 66 New Loci for Bmi, Confirming a Neuronal Contribution to Body Weight Regulation and Implicating Several	1.6	0