
Jordi Girones

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5872888/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Label-Free Biosensing With a Slot-Waveguide-Based Ring Resonator in Silicon on Insulator. IEEE Photonics Journal, 2009, 1, 197-204.	1.0	353
2	Chemical modification of jute fibers for the production of green-composites. Journal of Hazardous Materials, 2007, 144, 730-735.	6.5	197
3	Evaluation of Photocrosslinked Lutrol Hydrogel for Tissue Printing Applications. Biomacromolecules, 2009, 10, 1689-1696.	2.6	182
4	Natural fiber-reinforced thermoplastic starch composites obtained by melt processing. Composites Science and Technology, 2012, 72, 858-863.	3.8	155
5	Composite materials derived from biodegradable starch polymer and jute strands. Process Biochemistry, 2007, 42, 329-334.	1.8	142
6	Multiplexed Antibody Detection With an Array of Silicon-on-Insulator Microring Resonators. IEEE Photonics Journal, 2009, 1, 225-235.	1.0	119
7	SOI optical microring resonator with poly(ethylene glycol) polymer brush for label-free biosensor applications. Biosensors and Bioelectronics, 2009, 24, 2528-2533.	5.3	110
8	Effect of maleated polypropylene as coupling agent for polypropylene composites reinforced with hemp strands. Journal of Applied Polymer Science, 2006, 102, 833-840.	1.3	98
9	Effect of silane coupling agents on the properties of pine fibers/polypropylene composites. Journal of Applied Polymer Science, 2007, 103, 3706-3717.	1.3	77
10	Blocked isocyanates as coupling agents for cellulose-based composites. Carbohydrate Polymers, 2007, 68, 537-543.	5.1	73
11	Biocomposites from Musa textilis and polypropylene: Evaluation of flexural properties and impact strength. Composites Science and Technology, 2011, 71, 122-128.	3.8	70
12	Evaluation of the reinforcing effect of ground wood pulp in the preparation of polypropylene-based composites coupled with maleic anhydride grafted polypropylene. Journal of Applied Polymer Science, 2007, 105, 3588-3596.	1.3	61
13	Recycling Ability of Biodegradable Matrices and Their Cellulose-Reinforced Composites in a Plastic Recycling Stream. Journal of Polymers and the Environment, 2012, 20, 96-103.	2.4	53
14	Blocked diisocyanates as reactive coupling agents: Application to pine fiber–polypropylene composites. Carbohydrate Polymers, 2008, 74, 106-113.	5.1	52
15	Newspaper fiber-reinforced thermoplastic starch biocomposites obtained by melt processing: Evaluation of the mechanical, thermal and water sorption properties. Industrial Crops and Products, 2013, 44, 300-305.	2.5	42
16	Soda-Treated Sisal/Polypropylene Composites. Journal of Polymers and the Environment, 2008, 16, 35-39.	2.4	41
17	Evaluation of Bone Regeneration with an Injectable, <i>In Situ</i> Polymerizable Pluronic [®] F127 Hydrogel Derivative Combined with Autologous Mesenchymal Stem Cells in a Goat Tibia Defect Model. Tissue Engineering - Part A, 2010, 16, 617-627.	1.6	38
18	Hemp Strands: PP Composites by Injection Molding: Effect of Low Cost Physico-chemical Treatments. Journal of Reinforced Plastics and Composites, 2006, 25, 313-327.	1.6	37

Jordi Girones

#	Article	IF	CITATIONS
19	Cell survival and proliferation after encapsulation in a chemically modified Pluronic® F127 hydrogel. Journal of Biomaterials Applications, 2013, 27, 828-839.	1.2	35
20	Impact and flexural properties of stoneâ€ground wood pulpâ€reinforced polypropylene composites. Polymer Composites, 2013, 34, 842-848.	2.3	33
21	Crystallization of polypropylene in the presence of biomass-based fillers of different compositions. Polymer, 2017, 127, 220-231.	1.8	30
22	Bioresorbable and Nonresorbable Polymers for Bone Tissue Engineering Jordi Girones. Current Pharmaceutical Design, 2012, 18, 2536-2557.	0.9	27
23	Synthesis, characterization and applications of amphiphilic elastomeric polyurethane networks in drug delivery. Polymer Journal, 2013, 45, 331-338.	1.3	26
24	Evaluation of an Injectable, Photopolymerizable, and Three-Dimensional Scaffold Based on Methacrylate-Endcapped Poly(D,L-Lactide-co-É-Caprolactone) Combined with Autologous Mesenchymal Stem Cells in a Goat Tibial Unicortical Defect Model. Tissue Engineering - Part A, 2009, 15, 1501-1511.	1.6	24
25	Enantioselectivity in the catalytic hydroesterification of acenaphthylene: direct evidence of the racemization of PdII-alkyl species by a degenerate substitution equilibrium with PdOLn. Chemical Communications, 2003, , 1776-1778.	2.2	21
26	Recycling of Paper Mill Sludge as Filler/Reinforcement in Polypropylene Composites. Journal of Polymers and the Environment, 2010, 18, 407-412.	2.4	20
27	Evaluation of the influence of the addition of biodegradable polymer matrices in the formulation of self-curing polymer systems for biomedical purposes. Acta Biomaterialia, 2009, 5, 2953-2962.	4.1	18
28	Miscanthus stem fragment – Reinforced polypropylene composites: Development of an optimized preparation procedure at small scale and its validation for differentiating genotypes. Polymer Testing, 2016, 55, 166-172.	2.3	17
29	Thermoplastic Starch-based Composites Reinforced with Rape Fibers: Water Uptake and Thermomechanical Properties. BioResources, 2013, 8, .	0.5	16
30	Processing and properties of sorghum stem fragment-polyethylene composites. Industrial Crops and Products, 2017, 107, 386-398.	2.5	13
31	Acenaphtene-1-carboxylic acid methyl ester by palladium-catalyzed chemoselective hydroesterification of acenaphthylene. Journal of Molecular Catalysis A, 2003, 198, 77-88.	4.8	12
32	Correlations between genotype biochemical characteristics and mechanical properties of maize stem - polyethylene composites. Industrial Crops and Products, 2020, 143, 111925.	2.5	12
33	STONE-GROUND WOOD PULP-REINFORCED POLYPROPYLENE COMPOSITES: WATER UPTAKE AND THERMAL PROPERTIES. BioResources, 2012, 7, .	0.5	11
34	Thermal and dynamic mechanical characterization of acrylic bone cements modified with biodegradable polymers. Journal of Applied Polymer Science, 2013, 128, 3455-3464.	1.3	10
35	High-Performance-Tensile-Strength Alpha-Grass Reinforced Starch-Based Fully Biodegradable Composites. BioResources, 2013, 8, .	0.5	9
36	Orange Wood Fiber Reinforced Polypropylene Composites: Thermal Properties. BioResources, 2015, 10, .	0.5	9

Jordi Girones

#	Article	IF	CITATIONS
37	Biosensors in silicon on insulator. , 2009, , .		3
38	Variability of stem solidness among miscanthus genotypes and its role on mechanical properties of polypropylene composites. GCB Bioenergy, 2021, 13, 1576-1585.	2.5	3
39	Label-free biosensors on silicon-on-insulator optical chips. , 2009, , .		2
40	Polysaccharides and phenolics of miscanthus belowground cell walls and their influence on polyethylene composites. Carbohydrate Polymers, 2021, 251, 117086.	5.1	1
41	Enantioselectivity in the Catalytic Hydroesterification of Acenaphthylene: Direct Evidence of the Racemization of PdII-Alkyl Species by a Degenerate Substitution Equilibrium with PdOLn ChemInform, 2003, 34, no.	0.1	Ο
42	Multiplexed protein detection with an array of silicon-on-insulator microring resonators. , 2009, , .		0
43	One-step preparation procedure, mechanical properties and environmental performances of miscanthus-based concrete blocks. Materials Today Communications, 2022, 31, 103575.	0.9	0