Lauren Flynn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/587248/publications.pdf Version: 2024-02-01

LALIDEN FLVNN

#	Article	IF	CITATIONS
1	Biomaterial control of adipose-derived stem/stromal cell differentiation. , 2022, , 313-346.		Ο
2	The pig as a model system for investigating the recruitment and contribution of myofibroblasts in skin healing. Wound Repair and Regeneration, 2022, 30, 45-63.	3.0	8
3	Pannexin 3 deletion reduces fat accumulation and inflammation in a sex-specific manner. International Journal of Obesity, 2022, 46, 726-738.	3.4	8
4	Adipose Stromal Cells Enhance Decellularized Adipose Tissue Remodeling Through Multimodal Mechanisms. Tissue Engineering - Part A, 2021, 27, 618-630.	3.1	13
5	Preconditioning Human Adipose-Derived Stromal Cells on Decellularized Adipose Tissue Scaffolds Within a Perfusion Bioreactor Modulates Cell Phenotype and Promotes a Pro-regenerative Host Response. Frontiers in Bioengineering and Biotechnology, 2021, 9, 642465.	4.1	10
6	Decellularized adipose tissue scaffolds guide hematopoietic differentiation and stimulate vascular regeneration in a hindlimb ischemia model. Biomaterials, 2021, 274, 120867.	11.4	12
7	Polyesters based on aspartic acid and poly(ethylene glycol): Functional polymers for hydrogel preparation. European Polymer Journal, 2021, 152, 110456.	5.4	7
8	Modular cell-assembled adipose matrix-derived bead foams as a mesenchymal stromal cell delivery platform for soft tissue regeneration. Biomaterials, 2021, 275, 120978.	11.4	4
9	Development and characterization of matrixâ€derived microcarriers from decellularized tissues using electrospraying techniques. Journal of Biomedical Materials Research - Part A, 2021, , .	4.0	5
10	Culture on Tissueâ€Specific Coatings Derived from αâ€Amylaseâ€Digested Decellularized Adipose Tissue Enhances the Proliferation and Adipogenic Differentiation of Human Adiposeâ€Derived Stromal Cells. Biotechnology Journal, 2020, 15, 1900118.	3.5	9
11	Perfusion bioreactor culture of human adiposeâ€derived stromal cells on decellularized adipose tissue scaffolds enhances in vivo adipose tissue regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 1827-1840.	2.7	13
12	Neutral, water-soluble poly(ester amide) hydrogels for cell encapsulation. European Polymer Journal, 2020, 136, 109899.	5.4	6
13	Extracellular Matrix-Modified Fiber Scaffolds as a Proadipogenic Mesenchymal Stromal Cell Delivery Platform. ACS Biomaterials Science and Engineering, 2019, 5, 6655-6666.	5.2	15
14	Investigating the Effects of Tissue-Specific Extracellular Matrix on the Adipogenic and Osteogenic Differentiation of Human Adipose-Derived Stromal Cells Within Composite Hydrogel Scaffolds. Frontiers in Bioengineering and Biotechnology, 2019, 7, 402.	4.1	25
15	Peptideâ€modified methacrylated glycol chitosan hydrogels as a cellâ€viability supporting proâ€angiogenic cell delivery platform for human adiposeâ€derived stem/stromal cells. Journal of Biomedical Materials Research - Part A, 2019, 107, 571-585.	4.0	9
16	Matrix composition in 3-D collagenous bioscaffolds modulates the survival and angiogenic phenotype of human chronic wound dermal fibroblasts. Acta Biomaterialia, 2019, 83, 199-210.	8.3	17
17	Pannexin 1 and Pannexin 3 regulate body fat accumulation in mouse models of dietinduced obesity. FASEB Journal, 2019, 33, 796.13.	0.5	0
18	Comparative proteomic analyses of human adipose extracellular matrices decellularized using alternative procedures. Journal of Biomedical Materials Research - Part A, 2018, 106, 2481-2493.	4.0	37

LAUREN FLYNN

#	Article	IF	CITATIONS
19	Decellularized Adipose Tissue Scaffolds for Soft Tissue Regeneration and Adipose-Derived Stem/Stromal Cell Delivery. Methods in Molecular Biology, 2018, 1773, 53-71.	0.9	23
20	Mechanically resilient injectable scaffolds for intramuscular stem cell delivery and cytokine release. Biomaterials, 2018, 159, 146-160.	11.4	42
21	Decellularized Matrices As Cell-Instructive Scaffolds to Guide Tissue-Specific Regeneration. ACS Biomaterials Science and Engineering, 2018, 4, 3627-3643.	5.2	60
22	Pannexin 1 regulates adipose stromal cell differentiation and fat accumulation. Scientific Reports, 2018, 8, 16166.	3.3	23
23	Adipose-Derived Stem Cells in a Resilient <i>In Situ</i> Forming Hydrogel Modulate Macrophage Phenotype. Tissue Engineering - Part A, 2018, 24, 1784-1797.	3.1	13
24	Tough, Semisynthetic Hydrogels for Adipose Derived Stem Cell Delivery for Chondral Defect Repair. Macromolecular Bioscience, 2017, 17, 1600373.	4.1	17
25	Composite Bioscaffolds Incorporating Decellularized ECM as a Cell-Instructive Component Within Hydrogels as In Vitro Models and Cell Delivery Systems. Methods in Molecular Biology, 2017, 1577, 183-208.	0.9	15
26	Decellularized adipose tissue microcarriers as a dynamic culture platform for human adipose-derived stem/stromal cell expansion. Biomaterials, 2017, 120, 66-80.	11.4	95
27	Collagenase treatment enhances proteomic coverage of low-abundance proteins in decellularized matrix bioscaffolds. Biomaterials, 2017, 144, 130-143.	11.4	39
28	Fabrication of Extracellular Matrix-derived Foams and Microcarriers as Tissue-specific Cell Culture and Delivery Platforms. Journal of Visualized Experiments, 2017, , .	0.3	15
29	Comparative biomechanical study of using decellularized human adipose tissues for post-mastectomy and post-lumpectomy breast reconstruction. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 57, 235-245.	3.1	26
30	CHAPTER 6. Natural Materials as Smart Scaffolds for Tissue Engineering. RSC Smart Materials, 2016, , 124-162.	0.1	4
31	Porous, Ventricular Extracellular Matrix-Derived Foams as a Platform for Cardiac Cell Culture. BioResearch Open Access, 2015, 4, 374-388.	2.6	19
32	Multilineage co-culture of adipose-derived stem cells for tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 826-837.	2.7	7
33	Effect of decellularized adipose tissue particle size and cell density on adipose-derived stem cell proliferation and adipogenic differentiation in composite methacrylated chondroitin sulphate hydrogels. Biomedical Materials (Bristol), 2015, 10, 045010.	3.3	62
34	Adipose-derived stromal cells mediate inÂvivo adipogenesis, angiogenesis and inflammation in decellularized adipose tissue bioscaffolds. Biomaterials, 2015, 72, 125-137.	11.4	123
35	Mesenchymal stem cell delivery strategies to promote cardiac regeneration following ischemic injury. Biomaterials, 2014, 35, 3956-3974.	11.4	62
36	Composite hydrogel scaffolds incorporating decellularized adipose tissue for soft tissue engineering with adipose-derived stem cells. Biomaterials, 2014, 35, 1914-1923.	11.4	174

LAUREN FLYNN

#	Article	IF	CITATIONS
37	Characterization and assessment of hyperelastic and elastic properties of decellularized human adipose tissues. Journal of Biomechanics, 2014, 47, 3657-3663.	2.1	58
38	Comparison of Human Adipose-Derived Stem Cells Isolated from Subcutaneous, Omental, and Intrathoracic Adipose Tissue Depots for Regenerative Applications. Stem Cells Translational Medicine, 2014, 3, 206-217.	3.3	101
39	Techniques for the Isolation of High-Quality RNA from Cells Encapsulated in Chitosan Hydrogels. Tissue Engineering - Part C: Methods, 2013, 19, 829-838.	2.1	22
40	Porous decellularized adipose tissue foams for soft tissue regeneration. Biomaterials, 2013, 34, 3290-3302.	11.4	156
41	Characterization of biologically active insulin-loaded alginate microparticles prepared by spray drying. Drug Development and Industrial Pharmacy, 2013, 39, 457-465.	2.0	46
42	The Effect of Serial Passaging on the Proliferation and Differentiation of Bovine Adipose-Derived Stem Cells. Cells Tissues Organs, 2012, 195, 414-427.	2.3	33
43	Design and Characterization of Tissue-Specific Extracellular Matrix-Derived Microcarriers. Tissue Engineering - Part C: Methods, 2012, 18, 186-197.	2.1	70
44	Co-delivery of Adipose-Derived Stem Cells and Growth Factor-Loaded Microspheres in RGD-Grafted <i>N</i> -Methacrylate Glycol Chitosan Gels for Focal Chondral Repair. Biomacromolecules, 2012, 13, 2490-2502.	5.4	67
45	The performance of decellularized adipose tissue microcarriers as an inductive substrate for human adipose-derived stem cells. Biomaterials, 2012, 33, 4490-4499.	11.4	106
46	The use of decellularized adipose tissue to provide an inductive microenvironment for the adipogenic differentiation of human adipose-derived stem cells. Biomaterials, 2010, 31, 4715-4724.	11.4	347
47	Harnessing the purinergic receptor pathway to develop functional engineered cartilage constructs. Osteoarthritis and Cartilage, 2010, 18, 864-872.	1.3	19
48	Recent Patents in Cell-Based Strategies for Soft Tissue Engineering in Plastic and Reconstructive Surgery. Recent Patents on Biomedical Engineering, 2010, 3, 162-172.	0.5	0
49	Adipose tissue engineering <i>in vivo</i> with adiposeâ€derived stem cells on naturally derived scaffolds. Journal of Biomedical Materials Research - Part A, 2009, 89A, 929-941.	4.0	58
50	Burn Dressing Biomaterials and Tissue Engineering. , 2009, , 371-413.		1
51	Proliferation and differentiation of adipose-derived stem cells on naturally derived scaffolds. Biomaterials, 2008, 29, 1862-1871.	11.4	83
52	Adipose tissue engineering with cells in engineered matrices. Organogenesis, 2008, 4, 228-235.	1.2	79
53	Adipose tissue engineering with naturally derived scaffolds and adipose-derived stem cells. Biomaterials, 2007, 28, 3834-3842.	11.4	139
54	Biological skin substitutes for wound cover and closure. Expert Review of Medical Devices, 2006, 3, 373-385.	2.8	27

LAUREN FLYNN

#	Article	IF	CITATIONS
55	Decellularized placental matrices for adipose tissue engineering. Journal of Biomedical Materials Research - Part A, 2006, 79A, 359-369.	4.0	114
56	Fiber templating of poly(2-hydroxyethyl methacrylate) for neural tissue engineering. Biomaterials, 2003, 24, 4265-4272.	11.4	171
57	Manufacture of poly(2-hydroxyethyl methacrylate-co-methyl methacrylate) hydrogel tubes for use as nerve guidance channels. Biomaterials, 2002, 23, 3843-3851.	11.4	214