Xilong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5872186/publications.pdf

Version: 2024-02-01

361413 434195 1,108 43 20 31 citations h-index g-index papers 43 43 43 866 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Pt-confinement catalyst with dendritic hierarchical pores on excellent sulfur-resistance for hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene. Green Energy and Environment, 2022, 7, 324-333.	8.7	15
2	PdCu supported on dendritic mesoporous CexZr1-xO2 as superior catalysts to boost CO2 hydrogenation to methanol. Journal of Colloid and Interface Science, 2022, 611, 739-751.	9.4	18
3	Screening and design of active metals on dendritic mesoporous Ce0.3Zr0.7O2 for efficient CO2 hydrogenation to methanol. Fuel, 2022, 317, 123471.	6.4	12
4	Insights into the intrinsic kinetics for efficient hydrodesulfurization of 4,6-dimethyldibenzothiophene over mesoporous CoMoS2/ZSM-5. Journal of Catalysis, 2022, 408, 279-293.	6.2	20
5	Hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene over NiMo supported on yolk-shell silica catalysts with adjustable shell thickness and yolk size. Journal of Catalysis, 2022, 410, 128-143.	6.2	25
6	Lanthanum/Gallium-Modified Zn/ZSM-5 Zeolite for Efficient Isomerization/Aromatization of FCC Light Gasoline. Industrial & Engineering Chemistry Research, 2022, 61, 9667-9677.	3.7	9
7	A Brief Review on Solvent-Free Synthesis of Zeolites. Materials, 2021, 14, 788.	2.9	17
8	Facile synthesis of few-layer MoS2 nanosheets with different morphologies supported on Al-TUD-1 for efficient hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene. Chemical Engineering Journal, 2021, 425, 131416.	12.7	14
9	Hierarchically Porous \hat{l}^2 /SBA- 16 Composites: Tuning Pore Structure and Acidity for Enhanced Isomerization Performance in Hydrodesulfurization of Dibenzothiophene and 4,6-Dimethyldibenzothiophene. Energy & Energy & 1020, 34, 769-777.	5.1	12
10	Hierarchically Ordered Micro-/Mesoporous Material Assembled by a Zeolite W Nanocrystal and Its Hydro-Upgrading Performance for FCC Gasoline. Industrial & Engineering Chemistry Research, 2020, 59, 1101-1112.	3.7	5
11	Oriented Hydrocracking of Naphthalene into High-Value Light Aromatics over Difunctional Catalysts: Effect of Hydrogen Spillover and Utilization of Hydroreaction Characteristics for Different Active Metals. ACS Catalysis, 2020, 10, 12342-12353.	11.2	16
12	Structural Screening and Design of Dendritic Micro–Mesoporous Composites for Efficient Hydrodesulfurization of Dibenzothiophene and 4,6-Dimethyldibenzothiophene. ACS Applied Materials & & amp; Interfaces, 2020, 12, 40404-40414.	8.0	32
13	Modified Dendritic Mesoporous Silica Nanospheres Composites: Superior Pore Structure and Acidity for Enhanced Hydrodesulfurization Performance of Dibenzothiophene. Energy & E	5.1	16
14	Dendritic micro–mesoporous composites with center-radial pores assembled by TS-1 nanocrystals to enhance hydrodesulfurization activity of dibenzothiophene and 4,6-dimethyldibenzothiophene. Journal of Catalysis, 2020, 384, 136-146.	6.2	40
15	DFT insights into the formation of sulfur vacancies over corner/edge site of Co/Ni-promoted MoS2 and WS2 under the hydrodesulfurization conditions. Applied Catalysis B: Environmental, 2019, 257, 117937.	20.2	44
16	Influence of Support Acidity on the HDS Performance over \hat{l}^2 -SBA-16 and Al-SBA-16 Substrates: A Combined Experimental and Theoretical Study. Energy & Energy & 2019, 33, 1479-1488.	5.1	17
17	Ultrafine PtRu nanoparticles confined in hierarchically porous carbon derived from micro-mesoporous zeolite for enhanced nitroarenes reduction performance. Journal of Catalysis, 2019, 370, 385-403.	6.2	28
18	DFT insights into the direct desulfurization pathways of DBT and 4,6-DMDBT catalyzed by Co-promoted and Ni-promoted MoS2 corner sites. Chemical Engineering Science, 2019, 206, 249-260.	3.8	28

#	Article	IF	CITATIONS
19	High-Performance Bimetal NiMo Catalysts Prepared over Novel Cubic Mesoporous Silica with a Cost-Efficient Method for the Removal of Dibenzothiophene. Industrial & Dibenzothiophene. Indus	3.7	6
20	Synthesis of HKUST-1 and zeolite beta composites for deep desulfurization of model gasoline. RSC Advances, 2018, 8, 13750-13754.	3.6	10
21	Optimal Synthesis of Hierarchical Porous Composite ZSM-5/SBA-16 for Ultradeep Hydrodesulfurization of Dibenzothiophene and 4,6-Dimethyldibenzothiophene. Part 1: The Influence of Inorganic Salt on the Properties of NiMo Catalysts. Energy & Samp; Fuels, 2018, 32, 6204-6212.	5.1	16
22	Ultrasound-assisted synthesis of ordered mesoporous silica FDU-12 with a hollow structure. New Journal of Chemistry, 2018, 42, 2381-2384.	2.8	4
23	Controllable Synthesis of Spherical Al-SBA-16 Mesoporous Materials with Different Crystal Sizes and Its High Isomerization Performance for Hydrodesulfurization of Dibenzothiophene and 4,6-Dimethyldibenzothiophene. Industrial & Engineering Chemistry Research, 2018, 57, 2498-2507.	3.7	19
24	Self-Assembly of Hierarchically Porous ZSM-5/SBA-16 with Different Morphologies and Its High Isomerization Performance for Hydrodesulfurization of Dibenzothiophene and 4,6-Dimethyldibenzothiophene. ACS Catalysis, 2018, 8, 1891-1902.	11.2	61
25	Study on Hydrodesulfurization of L/W Coexistence Zeolite Modified by Magnesium for FCC Gasoline. Energy & Energ	5.1	8
26	Hierarchically Porous ZSM-5/SBA-15 Zeolite: Tuning Pore Structure and Acidity for Enhanced Hydro-Upgrading of FCC Gasoline. Industrial & Engineering Chemistry Research, 2018, 57, 14031-14043.	3.7	24
27	Hydrodesulfurization Properties of Dibenzothiophene over NiMo Catalysts Supported on Cubic <i>Fm</i> 3 <i>m</i> Mesoporous Structure and High-Framework Aluminum-Modified AlKIT-5. Energy & amp; Fuels, 2018, 32, 9793-9803.	5.1	12
28	Optimal Synthesis of Hierarchical Porous Composite ZSM-5/SBA-16 for Ultradeep Hydrodesulfurization of Dibenzothiophene and 4,6-Dimethyldibenzothiophene. Part 2: The Influence of Aging Temperature on the Properties of NiMo Catalysts. Energy & Damp; Fuels, 2018, 32, 7800-7809.	5.1	18
29	The Synthesis of Al-SBA-16 Materials with a Novel Method and Their Catalytic Application on Hydrogenation for FCC Diesel. Energy & Energy	5.1	15
30	Influence of sulfur vacancy on thiophene hydrodesulfurization mechanism at different MoS 2 edges: A DFT study. Chemical Engineering Science, 2017, 164, 292-306.	3.8	59
31	Hydro-upgrading Performance of Fluid Catalytic Cracking Diesel over Different Crystal Forms of Alumina-Supported CoMo Catalysts. Energy & Supported CoMo Catalysts.	5.1	26
32	Effect of synthesis temperature on structure-activity-relationship over NiMo/ \hat{l}^3 -Al2O3 catalysts for the hydrodesulfurization of DBT and 4,6-DMDBT. Fuel Processing Technology, 2017, 161, 52-61.	7.2	42
33	Restrictive Diffusion in the Hydrodesulfurization over Ni-MoS ₂ /Al ₂ O ₃ with Different Crystal Forms. Industrial & Engineering Chemistry Research, 2017, 56, 10018-10027.	3.7	21
34	Al-modified dendritic mesoporous silica nanospheres-supported NiMo catalysts for the hydrodesulfurization of dibenzothiophene: Efficient accessibility of active sites and suitable metalâ€"support interaction. Journal of Catalysis, 2017, 356, 269-282.	6.2	81
35	Platinum Nanoparticles Supported on TiO ₂ Photonic Crystals as Highly Active Photocatalyst for the Reduction of CO ₂ in the Presence of Water. Energy Technology, 2017, 5, 877-883.	3.8	29
36	Synthesis of NiMo catalysts supported on mesoporous silica FDU-12 with different morphologies and their catalytic performance of DBT HDS. Catalysis Today, 2017, 291, 146-152.	4.4	25

#	ARTICLE	IF	CITATIONS
37	Hierarchically Structured Porous Silica Spheres by Microemulsion/Vesicle Templating for Hydrodesulfurization of Fluid Catalytic Cracking Diesel. Particle and Particle Systems Characterization, 2016, 33, 190-203.	2.3	7
38	Synthesis of NiMo catalysts supported on mesoporous Al2O3 with different crystal forms and superior catalytic performance for the hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene. Journal of Catalysis, 2016, 344, 680-691.	6.2	111
39	Synthesis of mesoporous silica material with ultra-large pore sizes and the HDS performance of dibenzothiophene. Microporous and Mesoporous Materials, 2016, 226, 510-521.	4.4	23
40	Synthesis of a novel micro/mesoporous composite material Beta-FDU-12 and its hydro-upgrading performance for FCC gasoline. RSC Advances, 2016, 6, 1018-1026.	3.6	29
41	Synthesis of Alâ€Containing Spherical Mesocellular Silica Foams with Different Pore Sizes and Their Applications as Catalyst Supports for Hydrodesulfurization of Dibenzothiophene. ChemCatChem, 2015, 7, 1948-1960.	3.7	14
42	Effect of promoters on the HDS activity of alumina-supported Co–Mo sulfide catalysts. RSC Advances, 2015, 5, 99706-99711.	3.6	23
43	Self-assembly of monodispersed hierarchically porous Beta-SBA-15 with different morphologies and its hydro-upgrading performances for FCC gasoline. Journal of Materials Chemistry A, 2015, 3, 16501-16512.	10.3	57