Yuriy A Petrenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5872144/publications.pdf

Version: 2024-02-01

1.6	600	1039880	940416
16	629	9	16
papers	citations	h-index	g-index
18	18	18	1035
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The therapeutic potential of three-dimensional multipotent mesenchymal stromal cell spheroids. Stem Cell Research and Therapy, 2017, 8, 94.	2.4	179
2	Dimethyl sulfoxide: a central player since the dawn of cryobiology, is efficacy balanced by toxicity?. Regenerative Medicine, 2020, 15, 1463-1491.	0.8	118
3	A Comparative Analysis of Multipotent Mesenchymal Stromal Cells derived from Different Sources, with a Focus on Neuroregenerative Potential. Scientific Reports, 2020, 10, 4290.	1.6	111
4	Towards ready-to-use 3-D scaffolds for regenerative medicine: adhesion-based cryopreservation of human mesenchymal stem cells attached and spread within alginate–gelatin cryogel scaffolds. Journal of Materials Science: Materials in Medicine, 2014, 25, 857-871.	1.7	63
5	Remote Actuation of Apoptosis in Liver Cancer Cells via Magneto-Mechanical Modulation of Iron Oxide Nanoparticles. Cancers, 2019, 11, 1873.	1.7	40
6	DMSO-free cryopreservation of adipose-derived mesenchymal stromal cells: expansion medium affects post-thaw survival. Cytotechnology, 2017, 69, 265-276.	0.7	26
7	Clinically Relevant Solution for the Hypothermic Storage and Transportation of Human Multipotent Mesenchymal Stromal Cells. Stem Cells International, 2019, 2019, 1-11.	1.2	24
8	Cryostructuring of polymer systems. 47. Preparation of wide porous gelatin-based cryostructurates in sterilizing organic media and assessment of the suitability of thus formed matrices as spongy scaffolds for 3D cell culturing. E-Polymers, 2018, 18, 175-186.	1.3	21
9	Novel Cryopreservation Approach Providing Off-the-Shelf Availability of Human Multipotent Mesenchymal Stromal Cells for Clinical Applications. Stem Cells International, 2019, 2019, 1-11.	1.2	16
10	Generation of bone grafts using cryopreserved mesenchymal stromal cells and macroporous collagenâ€nanohydroxyapatite cryogels. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 489-499.	1.6	7
11	Efficiency of the sucrose-based solution and UW solution for hypothermic storage of human mesenchymal stromal cells in suspension or within alginate microspheres. Problems of Cryobiology and Cryomedicine, 2015, 25, 329-339.	0.3	7
12	Cryosensitivity of Mesenchymal Stromal Cells Cryopreserved Within Marine Sponge lanthella basta Skeleton-Based Carriers. Problems of Cryobiology and Cryomedicine, 2016, 26, 13-23.	0.3	7
13	Hepatic Tumor Cell Morphology Plasticity under Physical Constraints in 3D Cultures Driven by YAP–mTOR Axis. Pharmaceuticals, 2020, 13, 430.	1.7	5
14	Effect of cryopreservation using slow freezing or vitrification on viability and metabolic activity of mesenchymal stromal cells encapsulated within alginate spheres with diameter of 1 mm and more. Problems of Cryobiology and Cryomedicine, 2014, 24, 222-230.	0.3	2
15	Hypothermic Storage of 3D Cultured Multipotent Mesenchymal Stromal Cells for Regenerative Medicine Applications. Polymers, 2022, 14, 2553.	2.0	2
16	Liver structure in rats with experimental hepatic failure following implantation of macroporous carrier seeded with cryopreserved fetal liver cells. Problems of Cryobiology and Cryomedicine, 2014, 24, 292-301.	0.3	1