Nadine Ziemert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5871839/publications.pdf

Version: 2024-02-01

		136740	182168
52	7,156	32	51
papers	citations	h-index	g-index
58	58	58	7761
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	A rapid and efficient strategy to identify and recover biosynthetic gene clusters from soil metagenomes. Applied Microbiology and Biotechnology, 2022, 106, 3293.	1.7	5
2	Secondary Metabolite Transcriptomic Pipeline (SeMa-Trap), an expression-based exploration tool for increased secondary metabolite production in bacteria. Nucleic Acids Research, 2022, 50, W682-W689.	6.5	5
3	Compendium of specialized metabolite biosynthetic diversity encoded in bacterial genomes. Nature Microbiology, 2022, 7, 726-735.	5.9	106
4	The confluence of big data and evolutionary genome mining for the discovery of natural products. Natural Product Reports, 2021, 38, 2024-2040.	5.2	30
5	A community resource for paired genomic and metabolomic data mining. Nature Chemical Biology, 2021, 17, 363-368.	3.9	81
6	Structures of a non-ribosomal peptide synthetase condensation domain suggest the basis of substrate selectivity. Nature Communications, 2021, 12, 2511.	5.8	53
7	Mining Indonesian Microbial Biodiversity for Novel Natural Compounds by a Combined Genome Mining and Molecular Networking Approach. Marine Drugs, 2021, 19, 316.	2.2	14
8	SYN-View: A Phylogeny-Based Synteny Exploration Tool for the Identification of Gene Clusters Linked to Antibiotic Resistance. Molecules, 2021, 26, 144.	1.7	7
9	ARTS-DB: a database for antibiotic resistant targets. Nucleic Acids Research, 2021, , .	6.5	11
10	Evaluating the Distribution of Bacterial Natural Product Biosynthetic Genes across Lake Huron Sediment. ACS Chemical Biology, 2021, 16, 2623-2631.	1.6	4
11	Metagenomic Sequencing of Multiple Soil Horizons and Sites in Close Vicinity Revealed Novel Secondary Metabolite Diversity. MSystems, 2021, 6, e0101821.	1.7	16
12	Modular Fragment Synthesis and Bioinformatic Analysis Propose a Revised Vancoresmycin Stereoconfiguration. Organic Letters, 2021, 23, 1175-1180.	2.4	1
13	Genome Mining Approaches to Bacterial Natural Product Discovery. , 2020, , 19-33.		5
14	ARTS 2.0: feature updates and expansion of the Antibiotic Resistant Target Seeker for comparative genome mining. Nucleic Acids Research, 2020, 48, W546-W552.	6.5	116
15	The genus <i>Micromonospora</i> as a model microorganism for bioactive natural product discovery. RSC Advances, 2020, 10, 20939-20959.	1.7	29
16	Comparative Genomics and Metabolomics in the Genus Nocardia. MSystems, 2020, 5, .	1.7	39
17	New Nocobactin Derivatives with Antimuscarinic Activity, Terpenibactins A–C, Revealed by Genome Mining of <i>Nocardia terpenica</i> IFM 0406. ChemBioChem, 2020, 21, 2205-2213.	1.3	13
18	The ADEP Biosynthetic Gene Cluster in Streptomyces hawaiiensis NRRL 15010 Reveals an Accessory <i>clpP</i> Gene as a Novel Antibiotic Resistance Factor. Applied and Environmental Microbiology, 2019, 85, .	1.4	25

#	Article	IF	CITATIONS
19	Applied evolution: phylogeny-based approaches in natural products research. Natural Product Reports, 2019, 36, 1295-1312.	5.2	37
20	Kistamicin biosynthesis reveals the biosynthetic requirements for production of highly crosslinked glycopeptide antibiotics. Nature Communications, 2019, 10, 2613.	5.8	48
21	AutoMLST: an automated web server for generating multi-locus species trees highlighting natural product potential. Nucleic Acids Research, 2019, 47, W276-W282.	6.5	286
22	antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Research, 2019, 47, W81-W87.	6.5	2,410
23	Identification of a novel aminopolycarboxylic acid siderophore gene cluster encoding the biosynthesis of ethylenediaminesuccinic acid hydroxyarginine (EDHA). Metallomics, 2018, 10, 722-734.	1.0	8
24	Function-related replacement of bacterial siderophore pathways. ISME Journal, 2018, 12, 320-329.	4.4	66
25	Recovery of the Peptidoglycan Turnover Product Released by the Autolysin Atl in Staphylococcus aureus Involves the Phosphotransferase System Transporter MurP and the Novel 6-phospho-N-acetylmuramidase MupG. Frontiers in Microbiology, 2018, 9, 2725.	1.5	22
26	Analysis of the Genome and Metabolome of Marine Myxobacteria Reveals High Potential for Biosynthesis of Novel Specialized Metabolites. Scientific Reports, 2018, 8, 16600.	1.6	40
27	Assessing the Efficiency of Cultivation Techniques To Recover Natural Product Biosynthetic Gene Populations from Sediment. ACS Chemical Biology, 2018, 13, 2074-2081.	1.6	15
28	Comparative genomics reveals phylogenetic distribution patterns of secondary metabolites in Amycolatopsis species. BMC Genomics, 2018, 19, 426.	1.2	111
29	Identification of Natural Product Biosynthetic Gene Clusters from Bacterial Genomic Data. Methods in Pharmacology and Toxicology, 2018, , 1.	0.1	3
30	The Antibiotic Resistant Target Seeker (ARTS), an exploration engine for antibiotic cluster prioritization and novel drug target discovery. Nucleic Acids Research, 2017, 45, W42-W48.	6.5	142
31	Genomic insights into specialized metabolism in the marine actinomycete <i>Salinispora</i> Environmental Microbiology, 2017, 19, 3660-3673.	1.8	69
32	Mining Bacterial Genomes for Secondary Metabolite Gene Clusters. Methods in Molecular Biology, 2017, 1520, 23-47.	0.4	56
33	Sequencing rare marine actinomycete genomes reveals high density of unique natural product biosynthetic gene clusters. Microbiology (United Kingdom), 2016, 162, 2075-2086.	0.7	61
34	Antibiotic drug discovery. Microbial Biotechnology, 2016, 9, 541-548.	2.0	111
35	The evolution of genome mining in microbes – a review. Natural Product Reports, 2016, 33, 988-1005.	5.2	538
36	An Integrated Metabolomic and Genomic Mining Workflow To Uncover the Biosynthetic Potential of Bacteria. MSystems, 2016, 1 , .	1.7	55

#	Article	IF	CITATIONS
37	Salinipyrone and Pacificanone Are Biosynthetic Byâ€products of the Rosamicin Polyketide Synthase. ChemBioChem, 2015, 16, 1443-1447.	1.3	19
38	Molecular Networking and Pattern-Based Genome Mining Improves Discovery of Biosynthetic Gene Clusters and their Products from Salinispora Species. Chemistry and Biology, 2015, 22, 460-471.	6.2	150
39	Minimum Information about a Biosynthetic Gene cluster. Nature Chemical Biology, 2015, 11, 625-631.	3.9	715
40	Direct Capture and Heterologous Expression of <i>Salinispora</i> Natural Product Genes for the Biosynthesis of Enterocin. Journal of Natural Products, 2015, 78, 539-542.	1.5	60
41	Challenges and triumphs to genomics-based natural product discovery. Journal of Industrial Microbiology and Biotechnology, 2014, 41, 203-209.	1.4	67
42	Diversity and evolution of secondary metabolism in the marine actinomycete genus <i>Salinispora</i> Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1130-9.	3.3	241
43	Glycogenomics as a mass spectrometry-guided genome-mining method for microbial glycosylated molecules. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4407-16.	3.3	101
44	Phylogenetic Approaches to Natural Product Structure Prediction. Methods in Enzymology, 2012, 517, 161-182.	0.4	35
45	The Natural Product Domain Seeker NaPDoS: A Phylogeny Based Bioinformatic Tool to Classify Secondary Metabolite Gene Diversity. PLoS ONE, 2012, 7, e34064.	1.1	422
46	Leader Peptide and a Membrane Protein Scaffold Guide the Biosynthesis of the Tricyclic Peptide Microviridin. Chemistry and Biology, 2011, 18, 1413-1421.	6.2	54
47	Exploiting the Natural Diversity of Microviridin Gene Clusters for Discovery of Novel Tricyclic Depsipeptides. Applied and Environmental Microbiology, 2010, 76, 3568-3574.	1.4	83
48	Ribosomal Synthesis of Tricyclic Depsipeptides in Bloomâ€Forming Cyanobacteria. Angewandte Chemie - International Edition, 2008, 47, 7756-7759.	7.2	145
49	Inside Cover: Ribosomal Synthesis of Tricyclic Depsipeptides in Bloom-Forming Cyanobacteria (Angew.) Tj ETQq1	1 0,78431 7.2	4 rgBT /Ove
50	Innentitelbild: Ribosomal Synthesis of Tricyclic Depsipeptides in Bloom-Forming Cyanobacteria (Angew.) Tj ETQq0	0.0 rgBT /	Overlock 10
51	Highly plastic genome of Microcystis aeruginosa PCC 7806, a ubiquitous toxic freshwater cyanobacterium. BMC Genomics, 2008, 9, 274.	1.2	210
52	Microcyclamide Biosynthesis in Two Strains of <i>Microcystis aeruginosa </i> : from Structure to Genes and Vice Versa. Applied and Environmental Microbiology, 2008, 74, 1791-1797.	1.4	107