Gwenan M Knight

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5871749/publications.pdf

Version: 2024-02-01

61 papers 3,408 citations

236612 25 h-index 54 g-index

71 all docs

71 docs citations

times ranked

71

5708 citing authors

#	Article	IF	CITATIONS
1	Effectiveness of infection prevention and control interventions, excluding personal protective equipment, to prevent nosocomial transmission of SARS-CoV-2: a systematic review and call for action. Infection Prevention in Practice, 2022, 4, 100192.	0.6	6
2	Growth-Dependent Predation and Generalized Transduction of Antimicrobial Resistance by Bacteriophage. MSystems, 2022, 7, e0013522.	1.7	10
3	Impact of non-pharmaceutical interventions on SARS-CoV-2 outbreaks in English care homes: a modelling study. BMC Infectious Diseases, 2022, 22, 324.	1.3	12
4	Transmission dynamics of SARS-CoV-2 in a strictly-Orthodox Jewish community in the UK. Scientific Reports, 2022, 12 , .	1.6	0
5	The contribution of hospital-acquired infections to the COVID-19 epidemic in England in the first half of 2020. BMC Infectious Diseases, 2022, 22, .	1.3	22
6	Ongoing challenges to understanding multidrug- and rifampicin-resistant tuberculosis in children <i>versus</i> adults. European Respiratory Journal, 2021, 57, 2002504.	3.1	4
7	The effectiveness of biosecurity interventions in reducing the transmission of bacteria from livestock to humans at the farm level: A systematic literature review. Zoonoses and Public Health, 2021, 68, 549-562.	0.9	22
8	Antimicrobial resistance and COVID-19: Intersections and implications. ELife, 2021, 10, .	2.8	196
9	Community transmission of multidrug-resistant tuberculosis is associated with activity space overlap in Lima, Peru. BMC Infectious Diseases, 2021, 21, 275.	1.3	3
10	Importance of patient bed pathways and length of stay differences in predicting COVID-19 hospital bed occupancy in England. BMC Health Services Research, 2021, 21, 566.	0.9	22
11	Antimicrobial resistance at the G7. BMJ, The, 2021, 373, n1417.	3.0	7
12	Understanding MRSA clonal competition within a UK hospital; the possible importance of density dependence. Epidemics, 2021, 37, 100511.	1.5	3
13	Reconstructing the early global dynamics of under-ascertained COVID-19 cases and infections. BMC Medicine, 2020, 18, 332.	2.3	129
14	Potential impact of tuberculosis vaccines in China, South Africa, and India. Science Translational Medicine, 2020, 12, .	5.8	42
15	No antimicrobial resistance research agenda without tuberculosis. The Lancet Global Health, 2020, 8, e987-e988.	2.9	4
16	COVID-19 length of hospital stay: a systematic review and data synthesis. BMC Medicine, 2020, 18, 270.	2.3	430
17	Quantitatively evaluating the cross-sectoral and One Health impact of interventions: A scoping review and case study of antimicrobial resistance. One Health, 2020, 11, 100194.	1.5	11
18	The risk of multidrug- or rifampicin-resistance in males <i>versus</i> females with tuberculosis. European Respiratory Journal, 2020, 56, 2000626.	3.1	16

#	Article	IF	Citations
19	Implication of backward contact tracing in the presence of overdispersed transmission in COVID-19 outbreaks. Wellcome Open Research, 2020, 5, 239.	0.9	61
20	Definition of a genetic relatedness cutoff to exclude recent transmission of meticillin-resistant Staphylococcus aureus: a genomic epidemiology analysis. Lancet Microbe, The, 2020, 1, e328-e335.	3.4	75
21	What settings have been linked to SARS-CoV-2 transmission clusters?. Wellcome Open Research, 2020, 5, 83.	0.9	186
22	What settings have been linked to SARS-CoV-2 transmission clusters?. Wellcome Open Research, 2020, 5, 83.	0.9	290
23	Implication of backward contact tracing in the presence of overdispersed transmission in COVID-19 outbreaks. Wellcome Open Research, 2020, 5, 239.	0.9	62
24	The contribution of asymptomatic SARS-CoV-2 infections to transmission on the Diamond Princess cruise ship. ELife, 2020, 9, .	2.8	70
25	Global burden of latent multidrug-resistant tuberculosis: trends and estimates based on mathematical modelling. Lancet Infectious Diseases, The, 2019, 19, 903-912.	4.6	104
26	Mathematical modelling to study the horizontal transfer of antimicrobial resistance genes in bacteria: current state of the field and recommendations. Journal of the Royal Society Interface, 2019, 16, 20190260.	1.5	37
27	Mathematical modelling for antibiotic resistance control policy: do we know enough?. BMC Infectious Diseases, 2019, 19, 1011.	1.3	37
28	Dose finding for new vaccines: The role for immunostimulation/immunodynamic modelling. Journal of Theoretical Biology, 2019, 465, 51-55.	0.8	30
29	Age-targeted tuberculosis vaccination in China and implications for vaccine development: a modelling study. The Lancet Global Health, 2019, 7, e209-e218.	2.9	45
30	A Case-Control Study to Identify Community Venues Associated with Genetically-clustered, Multidrug-resistant Tuberculosis Disease in Lima, Peru. Clinical Infectious Diseases, 2019, 68, 1547-1555.	2.9	8
31	Feasibility of informing syndrome-level empiric antibiotic recommendations using publicly available antibiotic resistance datasets. Wellcome Open Research, 2019, 4, 140.	0.9	6
32	Feasibility of informing syndrome-level empiric antibiotic recommendations using publicly available antibiotic resistance datasets. Wellcome Open Research, 2019, 4, 140.	0.9	4
33	Addressing the Unknowns of Antimicrobial Resistance: Quantifying and Mapping the Drivers of Burden. Clinical Infectious Diseases, 2018, 66, 612-616.	2.9	15
34	Using vaccine Immunostimulation/Immunodynamic modelling methods to inform vaccine dose decision-making. Npj Vaccines, 2018, 3, 36.	2.9	16
35	Quantifying where human acquisition of antibiotic resistance occurs: a mathematical modelling study. BMC Medicine, 2018, 16, 137.	2.3	34
36	The relative fitness of drug-resistant <i>Mycobacterium tuberculosis</i> : a modelling study of household transmission in Peru. Journal of the Royal Society Interface, 2018, 15, 20180025.	1.5	8

#	Article	IF	CITATIONS
37	Estimating the burden of antimicrobial resistance: a systematic literature review. Antimicrobial Resistance and Infection Control, 2018, 7, 58.	1.5	341
38	Potential impact of influenza vaccine roll-out on antibiotic use in Africa. Journal of Antimicrobial Chemotherapy, 2018, 73, 2197-2200.	1.3	13
39	Fast and expensive (PCR) or cheap and slow (culture)? A mathematical modelling study to explore screening for carbapenem resistance in UK hospitals. BMC Medicine, 2018, 16, 141.	2.3	20
40	Using Data from Macaques To Predict Gamma Interferon Responses after Mycobacterium bovis BCG Vaccination in Humans: a Proof-of-Concept Study of Immunostimulation/Immunodynamic Modeling Methods. Vaccine Journal, 2017, 24, .	3.2	7
41	A Multistrain Mathematical Model To Investigate the Role of Pyrazinamide in the Emergence of Extensively Drug-Resistant Tuberculosis. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	17
42	The TB vaccine H56+IC31 dose-response curve is peaked not saturating: Data generation for new mathematical modelling methods to inform vaccine dose decisions. Vaccine, 2016, 34, 6285-6291.	1.7	22
43	Systematic review of mathematical models exploring the epidemiological impact of future TB vaccines. Human Vaccines and Immunotherapeutics, 2016, 12, 2813-2832.	1.4	78
44	Methods for estimating the burden of antimicrobial resistance: a systematic literature review protocol. Systematic Reviews, 2016, 5, 187.	2.5	10
45	The transmission of Mycobacterium tuberculosis in high burden settings. Lancet Infectious Diseases, The, 2016, 16, 227-238.	4.6	149
46	Bridging the gap between evidence and policy for infectious diseases: How models can aid public health decision-making. International Journal of Infectious Diseases, 2016, 42, 17-23.	1.5	54
47	Individual-level factors associated with variation in mycobacterial-specific immune response: Gender and previous BCG vaccination status. Tuberculosis, 2016, 96, 37-43.	0.8	6
48	Tuberculosis Prevention in South Africa. PLoS ONE, 2015, 10, e0122514.	1.1	17
49	The Impact and Cost-Effectiveness of a Four-Month Regimen for First-Line Treatment of Active Tuberculosis in South Africa. PLoS ONE, 2015, 10, e0145796.	1.1	10
50	Within-host diversity of MRSA antimicrobial resistances. Journal of Antimicrobial Chemotherapy, 2015, 70, 2191-2198.	1.3	49
51	The Distribution of Fitness Costs of Resistance-Conferring Mutations Is a Key Determinant for the Future Burden of Drug-Resistant Tuberculosis: A Model-Based Analysis. Clinical Infectious Diseases, 2015, 61, S147-S154.	2.9	40
52	Population-Level Impact of Shorter-Course Regimens for Tuberculosis: A Model-Based Analysis. PLoS ONE, 2014, 9, e96389.	1.1	10
53	Ebola: the power of behaviour change. Nature, 2014, 515, 492-492.	13.7	27
54	Impact and cost-effectiveness of new tuberculosis vaccines in low- and middle-income countries. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15520-15525.	3.3	153

#	Article	IF	CITATIONS
55	Drivers and Trajectories of Resistance to New First-Line Drug Regimens for Tuberculosis. Open Forum Infectious Diseases, 2014, 1, ofu073.	0.4	15
56	Large mobile genetic elements carrying resistance genes that do not confer a fitness burden in healthcare-associated meticillin-resistant Staphylococcus aureus. Microbiology (United Kingdom), 2013, 159, 1661-1672.	0.7	19
57	Metformin reduces airway glucose permeability and hyperglycaemia-induced <i>Staphylococcus aureus</i> load independently of effects on blood glucose. Thorax, 2013, 68, 835-845.	2.7	96
58	Predicting the Long-Term Impact of Antiretroviral Therapy Scale-Up on Population Incidence of Tuberculosis. PLoS ONE, 2013, 8, e75466.	1.1	24
59	Shuffling of mobile genetic elements (MGEs) in successful healthcare-associated MRSA (HA-MRSA). Mobile Genetic Elements, 2012, 2, 239-243.	1.8	22
60	Shift in dominant hospital-associated methicillin-resistant Staphylococcus aureus (HA-MRSA) clones over time. Journal of Antimicrobial Chemotherapy, 2012, 67, 2514-2522.	1.3	121
61	Implication of backward contact tracing in the presence of overdispersed transmission in COVID-19 outbreaks. Wellcome Open Research, 0, 5, 239.	0.9	5