
Anders Eklund

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5871609/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Risk and predictors of heart failure in sarcoidosis in a population-based cohort study from Sweden. Heart, 2022, 108, 467-473.	1.2	13
2	Pulmonary and blood dendritic cells from sarcoidosis patients more potently induce IFNÎ ³ -producing Th1 cells compared with monocytes. Journal of Leukocyte Biology, 2022, 111, 857-866.	1.5	9
3	Differences in disease presentation between men and women with sarcoidosis: A cohort study. Respiratory Medicine, 2022, 191, 106688.	1.3	13
4	Phenotypic and HLA-DRB1 allele characterization of Swedish cardiac sarcoidosis patients. International Journal of Cardiology, 2022, , .	0.8	4
5	Monocytes in sarcoidosis are potent TNF producers and predict disease outcome. European Respiratory Journal, 2021, 58, 2003468.	3.1	23
6	Positive Predictive Value of Sarcoidosis Identified in an Administrative Healthcare Registry: A Validation Study. Epidemiology, 2021, 32, 444-447.	1.2	10
7	Type 2 diabetes risk in sarcoidosis patients untreated and treated with corticosteroids. ERJ Open Research, 2021, 7, 00028-2021.	1.1	17
8	Effects of infliximab on lung and circulating natural killer cells, CD56+ T cells and B cells in sarcoidosis. BMJ Open Respiratory Research, 2021, 8, e000933.	1.2	1
9	Bronchoalveolar lavage fluid cell subsets associate with the disease course in Löfgren's and non-Löfgren's sarcoidosis patients. Respiratory Medicine, 2021, 186, 106521.	1.3	4
10	HLA-DRB1 alleles associate with hypercalcemia in sarcoidosis. Respiratory Medicine, 2021, 187, 106537.	1.3	11
11	Risk of acute myocardial infarction in sarcoidosis: A population-based cohort study from Sweden. Respiratory Medicine, 2021, 188, 106624.	1.3	6
12	Infection risk in sarcoidosis patients treated with methotrexate compared to azathioprine: A retrospective †target trial' emulated with Swedish realâ€world data. Respirology, 2021, 26, 452-460.	1.3	16
13	Secretory anti-citrullinated protein antibodies in serum associate with lung involvement in early rheumatoid arthritis. Rheumatology, 2020, 59, 852-859.	0.9	12
14	Sarcoidosis diagnosis and treatment in Sweden: A register-based assessment of variations by region and calendar period. Respiratory Medicine, 2020, 161, 105846.	1.3	13
15	Association between number and type of different ACPA fine specificities with lung abnormalities in early, untreated rheumatoid arthritis. RMD Open, 2020, 6, e001278.	1.8	16
16	Sarcoidosis exosomes stimulate monocytes to produce pro-inflammatory cytokines and CCL2. Scientific Reports, 2020, 10, 15328.	1.6	19
17	Maternal and infant outcomes in sarcoidosis pregnancy: a Swedish population-based cohort study of first births. Respiratory Research, 2020, 21, 225.	1.4	8
18	Subpopulations of cells from bronchoalveolar lavage can predict prognosis in sarcoidosis. European Respiratory Journal, 2020, 55, 1901450.	3.1	10

Anders Eklund

#	Article	IF	CITATIONS
19	Risk of first and recurrent serious infection in sarcoidosis: a Swedish register-based cohort study. European Respiratory Journal, 2020, 56, 2000767.	3.1	26
20	Lung CD4+ Vα2.3+ T-cells in sarcoidosis cohorts with Löfgren's syndrome. Respiratory Research, 2020, 21, 61.	1.4	8
21	High-intensity resistance training in newly diagnosed sarcoidosis- an exploratory study of effects on lung function, muscle strength, fatigue, dyspnea, health-related quality of life and lung immune cells. European Clinical Respiratory Journal, 2020, 7, 1730137.	0.7	10
22	Are infectious diseases risk factors for sarcoidosis or a result of reverse causation? Findings from a population-based nested case–control study. European Journal of Epidemiology, 2020, 35, 1087-1097.	2.5	12
23	Correspondence for "Clinical epidemiology of familial sarcoidosis: A systematic literature review― Respiratory Medicine, 2019, 160, 105696.	1.3	1
24	SpotLight Proteomics—A IgG-Enrichment Phenotype Profiling Approach with Clinical Implications. International Journal of Molecular Sciences, 2019, 20, 2157.	1.8	9
25	Moving target: shifting the focus to pulmonary sarcoidosis as an autoimmune spectrum disorder. European Respiratory Journal, 2019, 54, 1802153.	3.1	44
26	Mapping mononuclear phagocytes in blood, lungs, and lymph nodes of sarcoidosis patients. Journal of Leukocyte Biology, 2019, 105, 797-807.	1.5	15
27	A Gene–Environment Interaction Between Smoking and Gene polymorphisms Provides a High Risk of Two Subgroups of Sarcoidosis. Scientific Reports, 2019, 9, 18633.	1.6	34
28	Diagnostic approach for cardiac involvement in sarcoidosis. Sarcoidosis Vasculitis and Diffuse Lung Diseases, 2019, 36, 11-17.	0.2	4
29	Sarcoidosis mortality in Sweden: aÂpopulation-based cohort study. European Respiratory Journal, 2018, 51, 1701815.	3.1	59
30	Enhanced CD8+ cytolytic T cell responses in the peripheral circulation of patients with sarcoidosis and non-Löfgren's disease. Respiratory Medicine, 2018, 138, S38-S44.	1.3	15
31	Soluble epoxide hydrolase derived lipid mediators are elevated in bronchoalveolar lavage fluid from patients with sarcoidosis: a cross-sectional study. Respiratory Research, 2018, 19, 236.	1.4	4
32	Work ability before and after sarcoidosis diagnosis in Sweden. Respiratory Medicine, 2018, 144, S7-S12.	1.3	27
33	Familial aggregation and heritability of sarcoidosis: a Swedish nested caseâ~'control study. European Respiratory Journal, 2018, 52, 1800385.	3.1	51
34	In Situ Humoral Immunity to Vimentin in HLA-DRB1*03+ Patients With Pulmonary Sarcoidosis. Frontiers in Immunology, 2018, 9, 1516.	2.2	68
35	Altered Fc galactosylation in IgG4 is a potential serum marker for chronic lung disease. ERJ Open Research, 2018, 4, 00033-2018.	1.1	9
36	Shared αβ TCR Usage in Lungs of Sarcoidosis Patients with Löfgren's Syndrome. Journal of Immunology, 2017, 199, 2279-2290.	0.4	20

ANDERS EKLUND

#	Article	IF	CITATIONS
37	Common variants of T-cells contribute differently to phenotypic variation in sarcoidosis. Scientific Reports, 2017, 7, 5623.	1.6	9
38	Pulmonary sarcoidosis is associated with exosomal vitamin D–binding protein and inflammatory molecules. Journal of Allergy and Clinical Immunology, 2017, 139, 1186-1194.	1.5	39
39	Pulmonary Extracellular Vesicles as Mediators of Local and Systemic Inflammation. Frontiers in Cell and Developmental Biology, 2017, 5, 39.	1.8	61
40	SNP Variants in Major Histocompatibility Complex Are Associated with Sarcoidosis Susceptibility—A Joint Analysis in Four European Populations. Frontiers in Immunology, 2017, 8, 422.	2.2	31
41	Mass Cytometry Identifies Distinct Lung CD4+ T Cell Patterns in Löfgren's Syndrome and Non-Löfgren's Syndrome Sarcoidosis. Frontiers in Immunology, 2017, 8, 1130.	2.2	22
42	Expanded lung T-bet ⁺ RORγT ⁺ CD4 ⁺ T-cells in sarcoidosis patients with a favourable disease phenotype. European Respiratory Journal, 2016, 48, 484-494.	3.1	64
43	T-cell activation and HLA-regulated response to smoking in the deep airways of patients with multiple sclerosis. Clinical Immunology, 2016, 169, 114-120.	1.4	17
44	Approach for Identifying Human Leukocyte Antigen (HLA)-DR Bound Peptides from Scarce Clinical Samples. Molecular and Cellular Proteomics, 2016, 15, 3017-3029.	2.5	46
45	Sarcoidosis incidence and prevalence: a nationwide register-based assessment in Sweden. European Respiratory Journal, 2016, 48, 1690-1699.	3.1	176
46	The lung microbiota in early rheumatoid arthritis and autoimmunity. Microbiome, 2016, 4, 60.	4.9	158
47	Elevated levels of FN1 and CCL2 in bronchoalveolar lavage fluid from sarcoidosis patients. Respiratory Research, 2016, 17, 69.	1.4	9
48	T-cell receptor–HLA-DRB1 associations suggest specific antigens in pulmonary sarcoidosis. European Respiratory Journal, 2016, 47, 898-909.	3.1	65
49	High-Density Genetic Mapping Identifies New Susceptibility Variants in Sarcoidosis Phenotypes and Shows Genomic-driven Phenotypic Differences. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 1008-1022.	2.5	68
50	Signs of immune activation and local inflammation are present in the bronchial tissue of patients with untreated early rheumatoid arthritis. Annals of the Rheumatic Diseases, 2016, 75, 1722-1727.	0.5	93
51	Distinctive Regulatory T Cells and Altered Cytokine Profile Locally in the Airways of Young Smokers with Normal Lung Function. PLoS ONE, 2016, 11, e0164751.	1.1	2
52	Identification of Immune-Relevant Factors Conferring Sarcoidosis Genetic Risk. American Journal of Respiratory and Critical Care Medicine, 2015, 192, 727-736.	2.5	94
53	Reduced expression of peroxisome proliferator-activated receptor alpha in BAL and blood T cells of non-löfgren's sarcoidosis patients. Journal of Inflammation, 2015, 12, 28.	1.5	6
54	Shared immunological targets in the lungs and joints of patients with rheumatoid arthritis: identification and validation. Annals of the Rheumatic Diseases, 2015, 74, 1772-1777.	0.5	112

Anders Eklund

#	Article	IF	CITATIONS
55	Elevated Exhaled Nitric Oxide in Allergen-Provoked Asthma Is Associated with Airway Epithelial iNOS. PLoS ONE, 2014, 9, e90018.	1.1	51
56	A1.1†Characterisation of lung inflammation and identification of shared citrullinated targets in the lungs and joints of early rheumatoid arthritis. Annals of the Rheumatic Diseases, 2014, 73, A4.2-A5.	0.5	2
57	A1.4â€Early Signs of Subclinical Inflammation and Local Antibody Production in Early Rheumatoid Lungs. Annals of the Rheumatic Diseases, 2013, 72, A2.1-A2.	0.5	0
58	Identification of shared citrullinated immunological targets in the lungs and joints of patients with rheumatoid arthritis. Annals of the Rheumatic Diseases, 2012, 71, A19.1-A19.	0.5	6
59	Carbon monoxide levels in exhaled breath as a measure of recent smoking status. Clinical Respiratory Journal, 2011, 5, 8-9.	0.6	1
60	Löfgren's Syndrome. American Journal of Respiratory and Critical Care Medicine, 2009, 179, 307-312.	2.5	207
61	Aetiology, pathogenesis and treatment of sarcoidosis. Journal of Internal Medicine, 2003, 253, 2-3.	2.7	7
62	Detection and identification of human bronchoalveolar lavage proteins using narrow-range immobilized pH gradient DryStrip and the paper bridge sample application method. Electrophoresis, 2001, 22, 1851-1860.	1.3	45
63	Highly Activated T-Cell Receptor AV2S3+CD4+Lung T-Cell Expansions in Pulmonary Sarcoidosis. American Journal of Respiratory and Critical Care Medicine, 2001, 163, 1540-1545.	2.5	64
64	An Immobiline DryStrip application method enabling high-capacity two-dimensional gel electrophoresis. Electrophoresis, 2000, 21, 3649-3656.	1.3	54
65	Antibacterial Components in Bronchoalveolar Lavage Fluid from Healthy Individuals and Sarcoidosis Patients. American Journal of Respiratory and Critical Care Medicine, 1999, 160, 283-290.	2.5	154
66	HLA-DR Predicts the Prognosis in Scandinavian Patients with Pulmonary Sarcoidosis. American Journal of Respiratory and Critical Care Medicine, 1997, 156, 1601-1605.	2.5	250
67	Bronchoalveolar lavage findings in firefighters. , 1997, 32, 332-336.		22
68	Acute exposure to swine dust causes airway inflammation and bronchial hyperresponsiveness. American Journal of Industrial Medicine, 1994, 25, 57-58.	1.0	15
69	Controlled short-time terpene exposure induces an increase of the macrophages and the mast cells in bronchoalveolar lavage fluid. American Journal of Industrial Medicine, 1993, 23, 793-799.	1.0	33
70	Restricted Vα2.3 gene usage by CD4+ T lymphocytes in bronchoalveolar lavage fluid from sarcoidosis patients correlates with HLA-DR3. European Journal of Immunology, 1992, 22, 129-135.	1.6	138
71	Lung function and precipitating antibodies in low exposed wood trimmers in Sweden. American Journal of Industrial Medicine, 1992, 21, 549-559.	1.0	46
72	Improved recovery of cells elutriated from bronchoalveolar lavage fluid. Scandinavian Journal of Clinical and Laboratory Investigation, 1989, 49, 595-596.	0.6	2

#	Article	IF	CITATIONS
73	ls the Pi ^F allele of α ₁ â€antitrypsin asâ€sociated with pulmonary disease?. Clinical Genetics, 1984, 25, 491-495.	1.0	13