Kim Hung Mo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/58716/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Relationship between microstructure and performance of polypropylene fibre reinforced cement composites subjected to elevated temperature. European Journal of Environmental and Civil Engineering, 2022, 26, 1792-1806.	1.0	9
2	Sustainable ternary cement blends with high-volume ground granulated blast furnace slag–fly ash. Environment, Development and Sustainability, 2022, 24, 4751-4785.	2.7	17
3	Effective utilization of e-waste plastics and glasses in construction products - a review and future research directions. Resources, Conservation and Recycling, 2022, 176, 105936.	5.3	20
4	CO2 pretreatment of municipal solid waste incineration fly ash and its feasible use as supplementary cementitious material. Journal of Hazardous Materials, 2022, 424, 127457.	6.5	43
5	Offsetting strength loss in concrete via ITZ enhancement: From the perspective of utilizing new alternative aggregate. Cement and Concrete Composites, 2022, 127, 104385.	4.6	23
6	Utilization of coal fly ash and bottom ash in brick and block products. , 2022, , 355-371.		2
7	Impacts of polyvinyl alcohol and basalt fibres on green fly ash cenosphere lightweight cementitious composite. Materials Today: Proceedings, 2022, 61, 512-516.	0.9	2
8	Effects of CO2 curing treatment on alkali-silica reaction of mortars containing glass aggregate. Construction and Building Materials, 2022, 323, 126637.	3.2	8
9	Properties of Cementitious Repair Materials for Concrete Pavement. Advances in Materials Science and Engineering, 2022, 2022, 1-17.	1.0	6
10	Enhancement of seismic behaviour of precast beam-to-column joints using engineered cementitious composite. Engineering Structures, 2022, 255, 113932.	2.6	9
11	Aerogel and expanded perlite incorporated lightweight cementitious composites containing crushed glass: Evaluation of the drying shrinkage and alkali-silica expansion. Science Progress, 2022, 105, 003685042210911.	1.0	0
12	Meta-Analysis of the Performance of Pervious Concrete with Cement and Aggregate Replacements. Buildings, 2022, 12, 461.	1.4	11
13	Upcycling of waste hydrated cement paste containing high-volume supplementary cementitious materials via CO2 pre-treatment. Journal of Building Engineering, 2022, 52, 104396.	1.6	5
14	Effect of basalt and polypropylene fibers on crumb rubber mortar with Portland cement and calcium aluminate cement binders: Strength and artificial neural network prediction model. Progress in Rubber, Plastics and Recycling Technology, 2022, 38, 99-124.	0.8	3
15	Effects of moulding pressure and w/c induced pore water saturation on the CO2 curing efficiency of dry-mix cement blocks. Construction and Building Materials, 2022, 335, 127509.	3.2	6
16	High-temperature CO2 for accelerating the carbonation of recycled concrete fines. Journal of Building Engineering, 2022, 52, 104526.	1.6	9
17	Investigation on the copper ion removal potential of a facile-fabricated foamed geopolymer sphere for wastewater remediation. Cleaner Materials, 2022, 4, 100088.	1.9	8
18	The Potential of Geopolymer in Development of Green Coating Materials: A Review. Arabian Journal for Science and Engineering, 2022, 47, 12289-12299.	1.7	2

#	Article	IF	CITATIONS
19	Recycling Bayer and sintering red muds in brick production: a review. Journal of Zhejiang University: Science A, 2022, 23, 335-357.	1.3	5
20	Optimization of Pervious Geopolymer Concrete Using TOPSIS-Based Taguchi Method. Sustainability, 2022, 14, 8767.	1.6	13
21	Effect of particle size and CO ₂ treatment of waste cement powder on properties of cement paste. Canadian Journal of Civil Engineering, 2021, 48, 522-531.	0.7	54
22	Examining the Influence of Recycled Concrete Aggregate on the Hardened Properties of Self-compacting Concrete. Waste and Biomass Valorization, 2021, 12, 1133-1141.	1.8	15
23	Insights into the Multifaceted Applications of Architectural Concrete: A State-of-the-Art Review. Arabian Journal for Science and Engineering, 2021, 46, 4213-4223.	1.7	5
24	Alkali-silica reactivity of lightweight aggregate: A brief overview. Construction and Building Materials, 2021, 270, 121444.	3.2	13
25	Eco-mechanical performance of binary and ternary cement blends containing fly ash and slag. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 2021, 174, 23-36.	0.4	13
26	Raman spectroscopy as a tool to understand the mechanism of concrete durability—A review. Construction and Building Materials, 2021, 268, 121079.	3.2	25
27	Recent advances in artificial aggregate production. Journal of Cleaner Production, 2021, 291, 125215.	4.6	63
28	Performance of mechanical steel bar splices using grouted couplers under uniaxial tension. Journal of Building Engineering, 2021, 34, 101892.	1.6	12
29	Lightweight foamed concrete as a promising avenue for incorporating waste materials: A review. Resources, Conservation and Recycling, 2021, 164, 105103.	5.3	126
30	Synergistic Effect of Pre-carbonated Slurry and Mixing Sequence on the Performance of Self-compacting Recycled Aggregate Modified Mortar. Waste and Biomass Valorization, 2021, 12, 5201-5210.	1.8	9
31	An overview on the properties of eco-friendly concrete paving blocks incorporating selected waste materials as aggregate. Environmental Science and Pollution Research, 2021, 28, 29009-29036.	2.7	16
32	CO2 Treatment of Hydrated Cement Powder: Characterization and Application Consideration. Journal of Materials in Civil Engineering, 2021, 33, .	1.3	46
33	Effect of water-to-cement ratio induced hydration on the accelerated carbonation of cement pastes. Environmental Pollution, 2021, 280, 116914.	3.7	50
34	Effect of micro-sized silica aerogel on the properties of lightweight cement composite. Construction and Building Materials, 2021, 290, 123229.	3.2	22
35	Biomass ashes from agricultural wastes as supplementary cementitious materials or aggregate replacement in cement/geopolymer concrete: A comprehensive review. Journal of Building Engineering, 2021, 40, 102332.	1.6	88
36	Chemo-physico-mechanical characteristics of high-strength alkali-activated mortar containing non-traditional supplementary cementitious materials. Journal of Building Engineering, 2021, 44, 103368.	1.6	6

#	Article	IF	CITATIONS
37	Synthesis of porous geopolymer sphere for Ni(II) removal. Ceramics International, 2021, 47, 29055-29063.	2.3	21
38	Incorporation of crumb rubber and air-entraining agent in ultra-lightweight cementitious composite: Evaluation of mechanical and acoustic properties. Journal of Building Engineering, 2021, 42, 103034.	1.6	5
39	Understanding the compressive strength degradation mechanism of cement-paste incorporating phase change material. Cement and Concrete Composites, 2021, 124, 104249.	4.6	20
40	Towards an energy efficient cement composite incorporating silica aerogel: A state of the art review. Journal of Building Engineering, 2021, 44, 103227.	1.6	13
41	Comparative study on the properties and high temperature resistance of self-compacting concrete with various types of recycled aggregates. Case Studies in Construction Materials, 2021, 15, e00678.	0.8	5
42	The strength and environmental performance of asphalt mixtures with recycled concrete aggregates. Transportation Research, Part D: Transport and Environment, 2021, 100, 103065.	3.2	9
43	High calcium fly ash geopolymer for application in textile reinforced mortar. AIP Conference Proceedings, 2021, , .	0.3	0
44	Investigation of structural characteristics of palm oil clinker based high-strength lightweight concrete comprising steel fibers. Journal of Materials Research and Technology, 2021, 15, 6736-6746.	2.6	23
45	A Study of the Strength Performance of Peat Soil: A Modified Cement-Based Stabilization Agent Using Fly Ash and Polypropylene Fiber. Polymers, 2021, 13, 4059.	2.0	5
46	Waste press mud in enhancing the performance of glass powder blended cement. Construction and Building Materials, 2021, 313, 125469.	3.2	7
47	Comparative Study of Lightweight Cementitious Composite Reinforced with Different Fibre Types and the Effect of Silane-Based Admixture. Advances in Civil Engineering, 2021, 2021, 1-10.	0.4	122
48	Development of leak-free phase change material aggregates. Construction and Building Materials, 2020, 230, 117029.	3.2	22
49	Development of lightweight aggregate mortar skin layer for an innovative sandwich concrete composite. Journal of Building Engineering, 2020, 27, 100941.	1.6	11
50	Functions and impacts of plastic/rubber wastes as eco-friendly aggregate in concrete – A review. Construction and Building Materials, 2020, 240, 117869.	3.2	124
51	Compressive Strength Forecasting of Air-Entrained Rubberized Concrete during the Hardening Process Utilizing Elastic Wave Method. Crystals, 2020, 10, 912.	1.0	6
52	Thermal performance of a solar energy storage concrete panel incorporating phase change material aggregates developed for thermal regulation in buildings. Renewable Energy, 2020, 160, 817-829.	4.3	31
53	Mechanical strength and permeation properties of high calcium fly ash-based geopolymer containing recycled brick powder. Journal of Building Engineering, 2020, 32, 101655.	1.6	39
54	Viability of agricultural wastes as substitute of natural aggregate in concrete: A review on the durability-related properties. Journal of Cleaner Production, 2020, 275, 123062.	4.6	41

#	Article	IF	CITATIONS
55	CO2 sequestration of fresh concrete slurry waste: Optimization of CO2 uptake and feasible use as a potential cement binder. Journal of CO2 Utilization, 2020, 42, 101330.	3.3	55
56	Study on the use of lightweight expanded perlite and vermiculite aggregates in blended cement mortars. European Journal of Environmental and Civil Engineering, 2020, , 1-20.	1.0	9
57	Impact of CO2 curing on the microhardness and strength of 0.35 w/c cement paste: Comparative study of internal/surface layers. Journal of Materials Research and Technology, 2020, 9, 11849-11860.	2.6	26
58	Valorization of waste powders from cement-concrete life cycle: A pathway to circular future. Journal of Cleaner Production, 2020, 268, 122358.	4.6	77
59	Mechanical properties and drying shrinkage of lightweight cementitious composite incorporating perlite microspheres and polypropylene fibers. Construction and Building Materials, 2020, 246, 118410.	3.2	36
60	Current development of geopolymer as alternative adsorbent for heavy metal removal. Environmental Technology and Innovation, 2020, 18, 100684.	3.0	102
61	Sound absorption performance of modified concrete: A review. Journal of Building Engineering, 2020, 30, 101219.	1.6	39
62	Hydraulic and strength characteristics of pervious concrete containing a high volume of construction and demolition waste as aggregates. Construction and Building Materials, 2020, 253, 119251.	3.2	61
63	Use of phase change materials in nano-concrete for energy savings. , 2020, , 351-381.		1
64	Experimental Study on Clay Brick Masonry Assemblies Strengthened with Basalt Textile Reinforced Mortar. Journal of Testing and Evaluation, 2020, 48, 3312-3323.	0.4	1
65	Thermal efficiency and durability performances of paraffinic phase change materials with enhanced thermal conductivity – A review. Thermochimica Acta, 2019, 673, 198-210.	1.2	71
66	Microstructural and Strength Characteristics of High-Strength Mortar Using Nontraditional Supplementary Cementitious Materials. Journal of Materials in Civil Engineering, 2019, 31, .	1.3	23
67	Quality Improvement Techniques for Recycled Concrete Aggregate: A review. Journal of Advanced Concrete Technology, 2019, 17, 151-167.	0.8	105
68	A review of microencapsulated and composite phase change materials: Alteration of strength and thermal properties of cement-based materials. Renewable and Sustainable Energy Reviews, 2019, 110, 467-484.	8.2	135
69	A critical review of waste glass powder – Multiple roles of utilization in cement-based materials and construction products. Journal of Environmental Management, 2019, 242, 440-449.	3.8	162
70	Waste resources recycling in controlled low-strength material (CLSM): A critical review on plastic properties. Journal of Environmental Management, 2019, 241, 383-396.	3.8	55
71	Mechanical characteristics and flexural behaviour of fibre-reinforced cementitious composite containing PVA and basalt fibres. Sadhana - Academy Proceedings in Engineering Sciences, 2019, 44, 1.	0.8	20
72	Enhancement of high temperature performance of cement blocks via CO2 curing. Science of the Total Environment, 2019, 671, 827-837.	3.9	45

#	Article	IF	CITATIONS
73	Strength, Carbon Footprint and Cost Considerations of Mortar Blends with High Volume Ground Granulated Blast Furnace Slag. Sustainability, 2019, 11, 7194.	1.6	30
74	Ductility behaviours of oil palm shell steel fibre-reinforced concrete beams under flexural loading. European Journal of Environmental and Civil Engineering, 2019, 23, 866-878.	1.0	11
75	Green and Sustainable Concrete – The Potential Utilization of Rice Husk Ash and Egg Shells. Civil Engineering Journal (Iran), 2019, 5, 74.	1.2	25
76	Autoclaved Lime-Saline Soil Products: Reactivity Assessments and Effects of Quartz Sand. Journal of Materials in Civil Engineering, 2018, 30, 04018055.	1.3	0
77	Characterization of pervious concrete with blended natural aggregate and recycled concrete aggregates. Journal of Cleaner Production, 2018, 181, 155-165.	4.6	112
78	Effect of aggressive chemicals on durability and microstructure properties of concrete containing crushed new concrete aggregate and non-traditional supplementary cementitious materials. Construction and Building Materials, 2018, 163, 482-495.	3.2	62
79	Properties of metakaolin-blended oil palm shell lightweight concrete. European Journal of Environmental and Civil Engineering, 2018, 22, 852-868.	1.0	22
80	Valorization of Wastes from Power Plant, Steel-Making and Palm Oil Industries as Partial Sand Substitute in Concrete. Waste and Biomass Valorization, 2018, 9, 1645-1654.	1.8	14
81	Bond strength evaluation of palm oil fuel ash-based geopolymer normal weight and lightweight concretes with steel reinforcement. Journal of Adhesion Science and Technology, 2018, 32, 19-35.	1.4	16
82	Recycling of seashell waste in concrete: A review. Construction and Building Materials, 2018, 162, 751-764.	3.2	177
83	The Evaluation of Geotube Behaviors on Muddy Beach: Field Monitoring and Numerical Analysis. KSCE Journal of Civil Engineering, 2018, 22, 4185-4193.	0.9	2
84	Behaviour of fibre-reinforced cementitious composite containing high-volume fly ash at elevated temperatures. Sadhana - Academy Proceedings in Engineering Sciences, 2018, 43, 1.	0.8	6
85	Potential use of brick waste as alternate concrete-making materials: A review. Journal of Cleaner Production, 2018, 195, 226-239.	4.6	154
86	A review on microstructural study and compressive strength of geopolymer mortar, paste and concrete. Construction and Building Materials, 2018, 186, 550-576.	3.2	202
87	Recycling of wastes for value-added applications in concrete blocks: An overview. Resources, Conservation and Recycling, 2018, 138, 298-312.	5.3	138
88	Incorporation of expanded vermiculite lightweight aggregate in cement mortar. Construction and Building Materials, 2018, 179, 302-306.	3.2	63
89	Overview of supplementary cementitious materials usage in lightweight aggregate concrete. Construction and Building Materials, 2017, 139, 403-418.	3.2	81
90	Incorporation of nano-materials in cement composite and geopolymer based paste and mortar – A review. Construction and Building Materials, 2017, 148, 62-84.	3.2	209

#	Article	IF	CITATIONS
91	Shear behaviour and mechanical properties of steel fibre-reinforced cement-based and geopolymer oil palm shell lightweight aggregate concrete. Construction and Building Materials, 2017, 148, 369-375.	3.2	46
92	Mechanical strength and durability performance of autoclaved lime-saline soil brick. Construction and Building Materials, 2017, 146, 403-409.	3.2	21
93	Thermal conductivity, compressive and residual strength evaluation of polymer fibre-reinforced high volume palm oil fuel ash blended mortar. Construction and Building Materials, 2017, 130, 113-121.	3.2	40
94	Mechanical, toughness, bond and durability-relatedÂproperties of lightweight concrete reinforced with steel fibres. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.	1.3	33
95	Evaluation of Industrial By-Products as Sustainable Pozzolanic Materials in Recycled Aggregate Concrete. Sustainability, 2017, 9, 767.	1.6	58
96	Influence of polypropylene fibres on the tensile strength and thermal properties of various densities of foamed concrete. IOP Conference Series: Materials Science and Engineering, 2017, 271, 012058.	0.3	12
97	High strength oil palm shell concrete beams reinforced with steel fibres. Materiales De Construccion, 2017, 67, 142.	0.2	11
98	Microstructural investigations of palm oil fuel ash and fly ash based binders in lightweight aggregate foamed geopolymer concrete. Construction and Building Materials, 2016, 120, 112-122.	3.2	96
99	Structural performance of reinforced geopolymer concrete members: A review. Construction and Building Materials, 2016, 120, 251-264.	3.2	113
100	Durability properties of sustainable concrete containing high volume palm oil waste materials. Journal of Cleaner Production, 2016, 137, 167-177.	4.6	87
101	Bond stress-slip relationship of oil palm shell lightweight concrete. Engineering Structures, 2016, 127, 319-330.	2.6	25
102	Material and structural properties of waste-oil palm shell concrete incorporating ground granulated blast-furnace slag reinforced with low-volume steel fibres. Journal of Cleaner Production, 2016, 133, 414-426.	4.6	40
103	Green concrete partially comprised of farming waste residues: a review. Journal of Cleaner Production, 2016, 117, 122-138.	4.6	171
104	Prediction of the structural behaviour of oil palm shell lightweight concrete beams. Construction and Building Materials, 2016, 102, 722-732.	3.2	23
105	Bond properties of lightweight concrete – A review. Construction and Building Materials, 2016, 112, 478-496.	3.2	67
106	Mechanical and fresh properties of sustainable oil palm shell lightweight concrete incorporating palm oil fuel ash. Journal of Cleaner Production, 2016, 115, 307-314.	4.6	132
107	Assessing some durability properties of sustainable lightweight oil palm shell concrete incorporating slag and manufactured sand. Journal of Cleaner Production, 2016, 112, 763-770.	4.6	69
108	Experimental Investigation on the Properties of Lightweight Concrete Containing Waste Oil Palm Shell Aggregate. Procedia Engineering, 2015, 125, 587-593.	1.2	23

#	Article	IF	CITATIONS
109	Feasibility study of high volume slag as cement replacement for sustainable structural lightweight oil palm shell concrete. Journal of Cleaner Production, 2015, 91, 297-304.	4.6	88
110	Enhancement of the mechanical properties of lightweight oil palm shell concrete using rice husk ash and manufactured sand. Journal of Zhejiang University: Science A, 2015, 16, 59-69.	1.3	63
111	Contribution of acrylic fibre addition and ground granulated blast furnace slag on the properties of lightweight concrete. Construction and Building Materials, 2015, 95, 686-695.	3.2	32
112	Compressive Behaviour of Polyarcylonitrile Fibre Reinforced Lightweight Aggregate Concrete Composite. Advanced Materials Research, 2015, 1115, 188-191.	0.3	0
113	Compressive behaviour of lightweight oil palm shell concrete incorporating slag. Construction and Building Materials, 2015, 94, 263-269.	3.2	24
114	Influence of lightweight aggregate on the bond properties of concrete with various strength grades. Construction and Building Materials, 2015, 84, 377-386.	3.2	48
115	Utilization of ground granulated blast furnace slag as partial cement replacement in lightweight oil palm shell concrete. Materials and Structures/Materiaux Et Constructions, 2015, 48, 2545-2556.	1.3	49
116	A Review on the Use of Agriculture Waste Material as Lightweight Aggregate for Reinforced Concrete Structural Members. Advances in Materials Science and Engineering, 2014, 2014, 1-9.	1.0	31
117	The effect of steel fibres on the enhancement of flexural and compressive toughness and fracture characteristics of oil palm shell concrete. Construction and Building Materials, 2014, 55, 20-28.	3.2	77
118	Impact resistance of hybrid fibre-reinforced oil palm shell concrete. Construction and Building Materials, 2014, 50, 499-507.	3.2	99
119	Flexural toughness characteristics of steel–polypropylene hybrid fibre-reinforced oil palm shell concrete. Materials & Design, 2014, 57, 652-659.	5.1	128
120	Evaluation of thermal conductivity, mechanical and transport properties of lightweight aggregate foamed geopolymer concrete. Energy and Buildings, 2014, 72, 238-245.	3.1	307