
Rafael Muñoz-Mas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5871552/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of reservoir cascades on diversity, distribution, and abundance of fish assemblages in three Neotropical basins. Science of the Total Environment, 2021, 778, 146246.	3.9	15
2	Quantification of environmental water requirements; how far can we go?. , 2021, , 235-280.		0
3	Spatial validation of submerged fluvial topographic models by mesohabitat units. International Journal of Remote Sensing, 2021, 42, 2391-2416.	1.3	3
4	Alien animal introductions in Iberian inland waters: An update and analysis. Science of the Total Environment, 2020, 703, 134505.	3.9	21
5	Movement patterns of forest elephants (<i>Loxodonta cyclotis</i> Matschie, 1900) in the Odzalaâ€Kokoua National Park, Republic of Congo. African Journal of Ecology, 2020, 58, 23-33.	0.4	5
6	Effects of climate change on the life stages of streamâ€dwelling brown trout (<scp><i>Salmo) Tj ETQq0 0 0 rgBT 2020, 13, e2241.</i></scp>	/Overlock 1.1	10 Tf 50 54 5
7	Fish community responses to antecedent hydrological conditions based on long-term data in Mediterranean river basins (Iberian Peninsula). Science of the Total Environment, 2020, 728, 138052.	3.9	15
8	Investigating the influence of habitat structure and hydraulics on tropical macroinvertebrate communities. Ecohydrology and Hydrobiology, 2019, 19, 339-350.	1.0	13
9	Tree-based ensembles unveil the microhabitat suitability for the invasive bleak (Alburnus alburnus L.) and pumpkinseed (Lepomis gibbosus L.): Introducing XGBoost to eco-informatics. Ecological Informatics, 2019, 53, 100974.	2.3	19
10	Habitat evaluation for the endangered fish species <i>Lefua echigonia</i> in the Yagawa River, Japan. Journal of Ecohydraulics, 2019, 4, 147-157.	1.6	7
11	Microhabitat preferences of fish assemblages in the Udzungwa Mountains (Eastern Africa). Ecology of Freshwater Fish, 2019, 28, 473-484.	0.7	4
12	Determining the macroinvertebrate community indicators and relevant environmental predictors of the Hun-Tai River Basin (Northeast China): A study based on community patterning. Science of the Total Environment, 2018, 634, 749-759.	3.9	23
13	Determination of environmental flows in rivers using an integrated hydrological-hydrodynamic-habitat modelling approach. Journal of Environmental Management, 2018, 209, 273-285.	3.8	53
14	Revisiting probabilistic neural networks: a comparative study with support vector machines and the microhabitat suitability for the Eastern Iberian chub (Squalius valentinus). Ecological Informatics, 2018, 43, 24-37.	2.3	17
15	Combining literature-based and data-driven fuzzy models to predict brown trout (Salmo trutta L.) spawning habitat degradation induced by climate change. Ecological Modelling, 2018, 386, 98-114.	1.2	17
16	Microhabitat competition between Iberian fish species and the endangered Júcar nase (<i>Parachondrostoma arrigonis</i> ; Steindachner, 1866). Journal of Ecohydraulics, 2017, 2, 3-15.	1.6	7
17	Exploring the key drivers of riparian woodland successional pathways across three European river reaches. Ecohydrology, 2017, 10, e1888.	1.1	41
18	On species distribution modelling, spatial scales and environmental flow assessment with Multi–Layer Perceptron Ensembles: A case study on the redfin barbel (Barbus haasi; Mertens, 1925). Limnologica, 2017, 62, 161-172.	0.7	13

#	Article	IF	CITATIONS
19	Waning habitats due to climate change: the effects of changes in streamflow and temperature at the rear edge of the distribution of a cold-water fish. Hydrology and Earth System Sciences, 2017, 21, 4073-4101.	1.9	28
20	Comparing four methods for decision-tree induction: A case study on the invasive Iberian gudgeon () Tj ETQq0 0	Ͻ rgBT /Ov	erlgck 10 Tf
21	Generalized additive and fuzzy models in environmental flow assessment: A comparison employing the West Balkan trout (Salmo farioides; Karaman, 1938). Ecological Engineering, 2016, 91, 365-377.	1.6	29
22	Risk of invasion predicted with support vector machines: A case study on northern pike (Esox Lucius ,) Tj ETQqO	0 0 rgBT /0 1.2	Overlock 10 14
23	Generalized additive models to predict adult and young brown trout (<i>Salmo trutta</i> Linnaeus,) Tj ETQq1 1 0	.784314 rg	gð /Overloc
24	Shifts in the suitable habitat available for brown trout (Salmo trutta L.) under short-term climate change scenarios. Science of the Total Environment, 2016, 544, 686-700.	3.9	44
25	Potential impacts of climate change on flow regime and fish habitat in mountain rivers of the south-western Balkans. Science of the Total Environment, 2016, 540, 418-428.	3.9	86
26	Application of the physical habitat simulation for fish species to assess environmental flows in an Atlantic Forest Stream in South-eastern Brazil. Neotropical Ichthyology, 2015, 13, 685-698.	0.5	4
27	Can multilayer perceptron ensembles model the ecological niche of freshwater fish species?. Ecological Modelling, 2015, 309-310, 72-81.	1.2	14
28	Random forests to evaluate biotic interactions in fish distribution models. Environmental Modelling and Software, 2015, 67, 173-183.	1.9	60
29	Application of Probabilistic Neural Networks to microhabitat suitability modelling for adult brown trout (Salmo trutta L.) in Iberian rivers. Environmental Modelling and Software, 2014, 59, 30-43.	1.9	21
30	Assessment of brown trout habitat suitability in the Jucar River Basin (SPAIN): Comparison of data-driven approaches with fuzzy-logic models and univariate suitability curves. Science of the Total Environment, 2012, 440, 123-131.	3.9	68
31	HABITAT SUITABILITY MODELLING AT MESOHABITAT SCALE AND EFFECTS OF DAM OPERATION ON THE ENDANGERED JúCAR NASE, <i>PARACHONDROSTOMA ARRIGONIS</i> (RIVER CABRIEL, SPAIN). River Research and Applications, 2012, 28, 740-752.	0.7	41
32	Management of invasive alien species in Spain: A bibliometric review. NeoBiota, 0, 70, 123-150.	1.0	7