Yanbin Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5871538/publications.pdf Version: 2024-02-01

YANRIN ZHANC

#	Article	IF	CITATIONS
1	MLH1 Deficiency-Triggered DNA Hyperexcision by Exonuclease 1 Activates the cGAS-STING Pathway. Cancer Cell, 2021, 39, 109-121.e5.	16.8	108
2	Fanconi anemia pathway as a prospective target for cancer intervention. Cell and Bioscience, 2020, 10, 39.	4.8	35
3	Dipeptide repeat proteins inhibit homology-directed DNA double strand break repair in C9ORF72 ALS/FTD. Molecular Neurodegeneration, 2020, 15, 13.	10.8	58
4	Impeding the single-strand annealing pathway of DNA double-strand break repair by withaferin A-mediated FANCA degradation. DNA Repair, 2019, 77, 10-17.	2.8	7
5	Stitching up broken DNA ends by FANCA. Molecular and Cellular Oncology, 2018, 5, e1518101.	0.7	2
6	FANCA Promotes DNA Double-Strand Break Repair by Catalyzing Single-Strand Annealing and Strand Exchange. Molecular Cell, 2018, 71, 621-628.e4.	9.7	65
7	Maintenance of genome stability by Fanconi anemia proteins. Cell and Bioscience, 2017, 7, 8.	4.8	46
8	Identification of <i>KANSARL</i> as the first cancer predisposition fusion gene specific to the population of European ancestry origin. Oncotarget, 2017, 8, 50594-50607.	1.8	24
9	Characterization of ATPase Activity of P2RX2 Cation Channel. Frontiers in Physiology, 2016, 7, 186.	2.8	6
10	Human DNA Exonuclease TREX1 Is Also an Exoribonuclease That Acts on Single-stranded RNA. Journal of Biological Chemistry, 2015, 290, 13344-13353.	3.4	31
11	SLX4 contributes to telomere preservation and regulated processing of telomeric joint molecule intermediates. Nucleic Acids Research, 2015, 43, 5912-5923.	14.5	55
12	Histone Deacetylase 10 Regulates DNA Mismatch Repair and May Involve the Deacetylation of MutS Homolog 2. Journal of Biological Chemistry, 2015, 290, 22795-22804.	3.4	43
13	Base excision repair of oxidative DNA damage coupled with removal of a CAG repeat hairpin attenuates trinucleotide repeat expansion. Nucleic Acids Research, 2014, 42, 3675-3691.	14.5	23
14	Damage-dependent regulation of MUS81-EME1 by Fanconi anemia complementation group A protein. Nucleic Acids Research, 2014, 42, 1671-1683.	14.5	12
15	Crystal structure of a Fanconi anemia-associated nuclease homolog bound to 5′ flap DNA: basis of interstrand cross-link repair by FAN1. Genes and Development, 2014, 28, 2276-2290.	5.9	19
16	Combined Genetic and Nutritional Risk Models of Triple Negative Breast Cancer. Nutrition and Cancer, 2014, 66, 955-963.	2.0	32
17	Basal level of FANCD2 monoubiquitination is required for the maintenance of a sufficient number of licensed-replication origins to fire at a normal rate. Oncotarget, 2014, 5, 1326-1337.	1.8	25
18	Mouse DNA polymerase kappa has a functional role in the repair of DNA strand breaks. DNA Repair, 2013, 12, 377-388.	2.8	27

YANBIN ZHANG

#	Article	IF	CITATIONS
19	Coordinated Processing of 3′ Slipped (CAG)n/(CTG)n Hairpins by DNA Polymerases β and δ Preferentially Induces Repeat Expansions. Journal of Biological Chemistry, 2013, 288, 15015-15022.	3.4	18
20	In vitro FANCD2 monoubiquitination by HHR6 and hRad18. Cell Cycle, 2013, 12, 3448-3449.	2.6	11
21	Human Fanconi Anemia Complementation Group A Protein Stimulates the 5' Flap Endonuclease Activity of FEN1. PLoS ONE, 2013, 8, e82666.	2.5	11
22	Fanconi Anemia Complementation Group A (FANCA) Protein Has Intrinsic Affinity for Nucleic Acids with Preference for Single-stranded Forms. Journal of Biological Chemistry, 2012, 287, 4800-4807.	3.4	22
23	ATR–ATRIP Kinase Complex Triggers Activation of the Fanconi Anemia DNA Repair Pathway. Cancer Research, 2012, 72, 1149-1156.	0.9	62
24	Eukaryotic DNA Mismatch Repair In Vitro. Methods in Molecular Biology, 2012, 920, 149-162.	0.9	4
25	FANCA has intrinsic affinity to nucleic acids with preference for singleâ€stranded forms. FASEB Journal, 2012, 26, 539.15.	0.5	0
26	Termination of exonuclease 1â€catalyzed mismatch excision requires physical interaction between exonuclease 1 and MutLî±. FASEB Journal, 2012, 26, 539.11.	0.5	0
27	Insulin growth factor 2 mRNA binding protein 1 (IGF2BP1) regulates translation of the multidrug resistance protein 2 (MRP2) by binding to its 5′â€untranslated region (5′UTR). FASEB Journal, 2011, 25, 1015.8.	0.5	1
28	Does a helicase activity help mismatch repair in eukaryotes?. IUBMB Life, 2010, 62, 548-553.	3.4	13
29	Assembling an orchestra: Fanconi anemia pathway of repair. Frontiers in Bioscience - Landmark, 2010, 15, 1131.	3.0	10
30	The catalytic function of the Rev1 dCMP transferase is required in a lesion-specific manner for translesion synthesis and base damage-induced mutagenesis. Nucleic Acids Research, 2010, 38, 5036-5046.	14.5	36
31	FANCI Protein Binds to DNA and Interacts with FANCD2 to Recognize Branched Structures. Journal of Biological Chemistry, 2009, 284, 24443-24452.	3.4	54
32	Measuring strand discontinuity-directed mismatch repair in yeast Saccharomyces cerevisiae by cell-free nuclear extracts. Methods, 2009, 48, 14-18.	3.8	8
33	DNA repair. Methods, 2009, 48, 1-2.	3.8	4
34	Identification of Regulatory Factor X as a Novel Mismatch Repair Stimulatory Factor. Journal of Biological Chemistry, 2008, 283, 12730-12735.	3.4	9
35	Identification and characterization of OGG1 mutations in patients with Alzheimer's disease. Nucleic Acids Research, 2007, 35, 2759-2766.	14.5	105
36	Regulation of Replication Protein A Functions in DNA Mismatch Repair by Phosphorylation. Journal of Biological Chemistry, 2006, 281, 21607-21616.	3.4	34

YANBIN ZHANG

#	Article	IF	CITATIONS
37	Reconstitution of 5′-Directed Human Mismatch Repair in a Purified System. Cell, 2005, 122, 693-705.	28.9	316
38	The p-benzoquinone DNA adducts derived from benzene are highly mutagenic. DNA Repair, 2005, 4, 1399-1409.	2.8	30
39	Roles of Rad23 protein in yeast nucleotide excision repair. Nucleic Acids Research, 2004, 32, 5981-5990.	14.5	68
40	Differential Requirement for Proliferating Cell Nuclear Antigen in 5′ and 3′ Nick-directed Excision in Human Mismatch Repair. Journal of Biological Chemistry, 2004, 279, 16912-16917.	3.4	47
41	Effects of Base Sequence Context on Translesion Synthesis Past a Bulky (+)-trans-anti-B[a]P-N2-dG Lesion Catalyzed by the Y-family Polymerase pol κ. Biochemistry, 2003, 42, 2456-2466.	2.5	77
42	Lesion Bypass Activities of Human DNA Polymerase μ. Journal of Biological Chemistry, 2002, 277, 44582-44587.	3.4	62
43	trans-Lesion Synthesis Past Bulky Benzo[a]pyrene Diol Epoxide N2-dG and N6-dA Lesions Catalyzed by DNA Bypass Polymerases. Journal of Biological Chemistry, 2002, 277, 30488-30494.	3.4	180
44	Response of human REV1 to different DNA damage: preferential dCMP insertion opposite the lesion. Nucleic Acids Research, 2002, 30, 1630-1638.	14.5	122
45	8-(Hydroxymethyl)-3,N4-etheno-C, a Potential Carcinogenic Glycidaldehyde Product, Miscodes In Vitro Using Mammalian DNA Polymerasesâ€. Biochemistry, 2002, 41, 1778-1785.	2.5	14
46	Activities of human DNA polymerase Î⁰ in response to the major benzo[a]pyrene DNA adduct: error-free lesion bypass and extension synthesis from opposite the lesion. DNA Repair, 2002, 1, 559-569.	2.8	104
47	Two-step error-prone bypass of the (+)- and (â^')-trans-anti-BPDE-N2-dG adducts by human DNA polymerases η and κ. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2002, 510, 23-35.	1.0	69
48	Highly Frequent Frameshift DNA Synthesis by Human DNA Polymerase μ. Molecular and Cellular Biology, 2001, 21, 7995-8006.	2.3	83
49	Response of human DNA polymerase iota to DNA lesions. Nucleic Acids Research, 2001, 29, 928-935.	14.5	125
50	Error-free and error-prone lesion bypass by human DNA polymerase kappa in vitro. Nucleic Acids Research, 2000, 28, 4138-4146.	14.5	258
51	Preferential Incorporation of G Opposite Template T by the Low-Fidelity Human DNA Polymerase Î ¹ . Molecular and Cellular Biology, 2000, 20, 7099-7108.	2.3	195
52	Specificity of DNA Lesion Bypass by the Yeast DNA Polymerase Ε. Journal of Biological Chemistry, 2000, 275, 8233-8239.	3.4	146
53	Error-prone lesion bypass by human DNA polymerase eta. Nucleic Acids Research, 2000, 28, 4717-4724.	14.5	166
54	Human DNA polymerase kappa synthesizes DNA with extraordinarily low fidelity. Nucleic Acids Research, 2000, 28, 4147-4156.	14.5	98

#	Article	IF	CITATIONS
55	The human RAD18 gene product interacts with HHR6A and HHR6B. Nucleic Acids Research, 2000, 28, 2847-2854.	14.5	68
56	The human REV1 gene codes for a DNA template-dependent dCMP transferase. Nucleic Acids Research, 1999, 27, 4468-4475.	14.5	170