
Axel Garcia y Garcia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5871528/publications.pdf Version: 2024-02-01

AVEL CARCIA V CARCIA

#	Article	IF	CITATIONS
1	Long-Term Evidence Shows that Crop-Rotation Diversification Increases Agricultural Resilience to Adverse Growing Conditions in North America. One Earth, 2020, 2, 284-293.	6.8	219
2	AgClimate: A climate forecast information system for agricultural risk management in the southeastern USA. Computers and Electronics in Agriculture, 2006, 53, 13-27.	7.7	134
3	Equa§ões para a estimativa do Ãndice de área foliar do cafeeiro. Pesquisa Agropecuaria Brasileira, 2002, 37, 769-773.	0.9	83
4	Maize ethanol feedstock production and net energy value as affected by climate variability and crop management practices. Agricultural Systems, 2009, 100, 11-21.	6.1	56
5	Effect of high temperature on photosynthesis and transpiration of sweet corn (Zea mays L. var.) Tj ETQq1 1 0.78	4314 rgB1 1.7	- /Qyerlock
6	Application of the CSM-CERES-Rice model for evaluation of plant density and irrigation management of transplanted rice for an irrigated semiarid environment. Irrigation Science, 2013, 31, 491-506.	2.8	46
7	Interactive effects of elevated [CO2] and temperature on growth and development of a short- and long-season peanut cultivar. Climatic Change, 2009, 93, 389-406.	3.6	44
8	Development of an ENSO-based irrigation decision support tool for peanut production in the southeastern US. Computers and Electronics in Agriculture, 2007, 55, 28-35.	7.7	42
9	Impact of generated solar radiation on simulated crop growth and yield. Ecological Modelling, 2008, 210, 312-326.	2.5	41
10	Water use and water use efficiency of sweet corn under different weather conditions and soil moisture regimes. Agricultural Water Management, 2009, 96, 1369-1376.	5.6	39
11	Response of soybean genotypes to different irrigation regimes in a humid region of the southeastern USA. Agricultural Water Management, 2010, 97, 981-987.	5.6	36
12	Evaluating Agronomic Responses of Camelina to Seeding Date under Rainâ€Fed Conditions. Agronomy Journal, 2016, 108, 349-357.	1.8	36
13	Influence of nitrogen and sulfur application on camelina performance under dryland conditions. Industrial Crops and Products, 2015, 70, 253-259.	5.2	34
14	Evaluation of an improved daily solar radiation generator for the southeastern USA. Climate Research, 2005, 29, 91-102.	1.1	34
15	Irrigation water use estimates based on crop simulation models and kriging. Agricultural Water Management, 2007, 89, 199-207.	5.6	32
16	Cotton yields as influenced by ENSO at different planting dates and spatial aggregation levels. Agricultural Systems, 2012, 111, 45-52.	6.1	32
17	Estimating irrigation water use for maize in the Southeastern USA: A modeling approach. Agricultural Water Management, 2012, 107, 104-111.	5.6	32
18	EFFECT OF LIMING ON THE NUTRITIONAL CONDITIONS AND YIELD OF ALFALFA GROWN IN TROPICAL CONDITIONS. Journal of Plant Nutrition, 2011, 34, 1107-1119.	1.9	30

AXEL GARCIA Y GARCIA

#	Article	IF	CITATIONS
19	Produtividade do Panicum maximum cv. Mombaça irrigado, sob pastejo rotacionado. Scientia Agricola, 2002, 59, 427-433.	1.2	24
20	Net energy value of maize ethanol as a response to different climate and soil conditions in the southeastern USA. Biomass and Bioenergy, 2009, 33, 1055-1064.	5.7	24
21	Temperatura do ar, rendimento de grãos de milho e caracterização fenológica associada à soma calórica. Scientia Agricola, 2000, 57, 377-383.	1.2	24
22	ENSO-based climate variability affects water use efficiency of rainfed cotton grown in the southeastern USA. Agriculture, Ecosystems and Environment, 2010, 139, 629-635.	5.3	21
23	Photoperiod sensitivity of local millet and sorghum varieties in West Africa. Njas - Wageningen Journal of Life Sciences, 2014, 68, 29-39.	7.7	20
24	Effect of Irrigation and Nitrogen Fertilization Strategies on Silage Corn Grown in Semi-Arid Conditions. Agronomy, 2018, 8, 208.	3.0	20
25	Effect of atmospheric water vapor on photosynthesis, transpiration and canopy conductance: A case study in corn. Plant, Soil and Environment, 2013, 59, 549-555.	2.2	19
26	Managing Harvest Time to Control Pod Shattering in Oilseed Camelina. Agronomy Journal, 2016, 108, 656-661.	1.8	19
27	Alternative Crop Insurance Indexes. Journal of Agricultural & amp; Applied Economics, 2008, 40, 223-237.	1.4	18
28	Grassâ€Legume Seed Mass Ratios and Nitrogen Rates Affect Forage Accumulation, Nutritive Value, and Profitability. Crop Science, 2017, 57, 2852-2864.	1.8	18
29	Towards sustainable maize production in the U.S. upper Midwest with interseeded cover crops. PLoS ONE, 2020, 15, e0231032.	2.5	18
30	A Real-Time Gridded Crop Model for Assessing Spatial Drought Stress on Crops in the Southeastern United States. Journal of Applied Meteorology and Climatology, 2011, 50, 1459-1475.	1.5	17
31	The ENSO effect on peanut yield as influenced by planting date and soil type. Agricultural Systems, 2013, 121, 1-8.	6.1	17
32	Simulating the production potential and net energy yield of maize-ethanol in the southeastern USA. European Journal of Agronomy, 2010, 32, 272-279.	4.1	16
33	Soil Fertility, Mineral Nitrogen, and Microbial Biomass in Upland Soils of the Central Amazon under Different Plant Covers. Communications in Soil Science and Plant Analysis, 2011, 42, 694-705.	1.4	16
34	Analysis of the Inter-Annual Variation of Peanut Yield in Georgia Using a Dynamic Crop Simulation Model. Transactions of the ASABE, 2006, 49, 2005-2015.	1.1	14
35	Logistic rice model for dry matter and nutrient uptake. Scientia Agricola, 2003, 60, 481-488.	1.2	11
36	Seletividade de herbicidas para a cultura de milho (Zea mays) aplicados em diferentes estádios fenológicos da cultura. Planta Daninha, 2003, 21, 413-419.	0.5	10

#	Article	IF	CITATIONS
37	Impact of Planting Date and Hybrid on Early Growth of Sweet Corn. Agronomy Journal, 2009, 101, 193-200.	1.8	10
38	Parameterizing soil and weather inputs for crop simulation models using the VEMAP database. Agriculture, Ecosystems and Environment, 2010, 135, 111-118.	5.3	10
39	Reduction in greenhouse gas emissions due to the use of bio-ethanol from wheat grain and straw produced in the south-eastern USA. Journal of Agricultural Science, 2010, 148, 511-527.	1.3	10
40	In-season weather data provide reliable yield estimates of maize and soybean in the US central Corn Belt. International Journal of Biometeorology, 2021, 65, 489-502.	3.0	9
41	Improving Site-Specific Maize Yield Estimation by Integrating Satellite Multispectral Data into a Crop Model. Agronomy, 2019, 9, 719.	3.0	8
42	Determination of Cultivar Coefficients for the CSM-CROPGRO-Peanut Model Using Variety Trial Data. Transactions of the ASABE, 2008, 51, 1471-1481.	1.1	7
43	Response of confection sunflower (<i>Helianthus annuus</i> L.) grown in a semiâ€arid environment to planting date and early termination of irrigation. Journal of Agronomy and Crop Science, 2017, 203, 301-308.	3.5	7
44	Evaluation of Silage Corn Yield Gap: An Approach for Sustainable Production in the Semi-Arid Region of USA. Sustainability, 2018, 10, 2523.	3.2	7
45	Soil Water Content and Crop Water Use in Contrasting Cropping Systems. Transactions of the ASABE, 2018, 61, 75-86.	1.1	7
46	Cover crop potential of winter oilseed crops in the Northern U.S. Corn Belt. Archives of Agronomy and Soil Science, 2019, 65, 1845-1859.	2.6	7
47	Effects of Cropping Practices on Water-Use and Water Productivity of Dryland Winter Wheat in the High Plains Ecoregion of Wyoming. Journal of Crop Improvement, 2015, 29, 491-517.	1.7	6
48	Relay and sequential cropping corn with winter oilseed crops in northern climates. Nutrient Cycling in Agroecosystems, 2020, 116, 195-203.	2.2	6
49	Balance hÃdrico ciclico y secuencial: estimación de almacenamiento de agua en el suelo. Scientia Agricola, 1999, 56, 537-546.	1.2	6
50	Growth, water productivity, nutritive value, and physiology responses of silage corn to water stress. Agronomy Journal, 2020, 112, 1625-1635.	1.8	5
51	Phosphorus fertilization and enhanced efficiency products effects on sugarbeet. Industrial Crops and Products, 2021, 171, 113887.	5.2	5
52	Estimativa do volume máximo de calda para aplicação foliar de produtos quÃmicos na cultura de milho. Scientia Agricola, 2000, 57, 283-288.	1.2	4
53	Enhanced Growth Rate and Reduced Water Demand of Crop Due to Climate Change in the Eastern Mediterranean Region. The Anthropocene: Politik - Economics - Society - Science, 2019, , 269-293.	0.2	4
54	Using Thermal Units for Estimating Critical Period of Weed Competition in Off-Season Maize Crop. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2005, 40, 1-11.	1.5	3

#	Article	IF	CITATIONS
55	Deficit irrigation: a viable option for sustainable confection sunflower (Helianthus annuus L.) production in the semi-arid US. Irrigation Science, 2018, 36, 319-328.	2.8	3
56	<i>Impact of Climate Change on Maize Grown in the Brazilian Cerrado</i> . , 2018, , .		3
57	An Alternative Approach to the Actual Brazilian Maize Crop Zoning. Revista Brasileira De Milho E Sorgo, 2014, 13, 347-363.	0.2	3
58	Climate-Based Agricultural Risk Management Tools for Florida, Georgia and Alabama, USA. , 2007, , 273-278.		2
59	Container Temperature and Moisture for Estimating Evapotranspiration of Nursery Crops. , 2004, , .		1
60	Crop Water Stress Index and Non-Stressed Baseline of Corn Grown in the State of Wyoming, US. , 2012, , .		1
61	Yield and Nitrate Leaching in a Rainfed Maize Crop Using Swine Manure and Mineral Fertilizer as Nitrogen Sources. , 2013, , .		1
62	Soil Water Availability and Water Use of Crops from Contrasting Cropping Systems. , 2016, , .		1
63	Water and heat stress: the effect on the growth and yield of maize and the impacts on irrigation water. WIT Transactions on Ecology and the Environment, 2014, , .	0.0	1
64	Alternative Crop Insurance Indexes. Journal of Agricultural & amp; Applied Economics, 2008, 40, 223-237.	1.4	1
65	Simulating Peanut Yield and Irrigation Applications with the CSM-CROPGRO-Peanut Model. , 2004, , .		0
66	Analyzing Long-term Historical Peanut Yield in Georgia with a Crop Simulation Model: the Southeast Climate Consortium Experience. , 2005, , 1.		0
67	Peanut Irrigation Management Using Climate-Based Information. , 0, , .		Ο
68	Characterizing the Seasonal Variation of Temperature and Moisture of Containerized Crops Media. , 2008, , .		0
69	Relation between Air and Media Temperature of Containerized Nursery Crops. , 2008, , .		Ο
70	An Alternative Approach to the Actual Brazilian Maize Crop Zoning. , 2013, , .		0
71	Strategies to Enhance the Productivity of Rainfed Off-Season Maize. , 2016, , .		0
72	Response of Corn for Silage to Water in a Semi-Arid Environment. , 2016, , .		0

#	Article	IF	CITATIONS
73	Response of Tropical Maize to Supplemental Irrigation Strategies. , 2016, , .		0
74	<i>Sensitivity of CSM-CERES-Maize model to soil available water and impact on rainfed maize grown in the Brazilian Cerrado</i> . , 2018, , .		0
75	Correction to: Enhanced Growth Rate and Reduced Water Demand of Crop Due to Climate Change in the Eastern Mediterranean Region. The Anthropocene: Politik - Economics - Society - Science, 2019, , C1-C1.	0.2	0