Min Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5871317/publications.pdf

Version: 2024-02-01

434195 394421 2,363 31 19 31 citations h-index g-index papers 32 32 32 2254 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Selective Catalytic Reduction of NO _{<i>x</i>} with NH ₃ by Using Novel Catalysts: State of the Art and Future Prospects. Chemical Reviews, 2019, 119, 10916-10976.	47.7	1,003
2	Fe ₂ O ₃ –CeO ₂ @Al ₂ O ₃ Nanoarrays on Al-Mesh as SO ₂ -Tolerant Monolith Catalysts for NO _{<i>x</i>} Reduction by NH ₃ . Environmental Science &	10.0	195
3	SO ₂ -Tolerant Selective Catalytic Reduction of NO _{<i>x</i>} over Meso-TiO ₂ @Fe ₂ O ₃ @Al ₂ O ₃ Metal-Based Monolith Catalysts. Environmental Science & E	10.0	171
4	Electrostatic Stabilization of Single-Atom Catalysts by Ionic Liquids. CheM, 2019, 5, 3207-3219.	11.7	131
5	Defect-induced efficient dry reforming of methane over two-dimensional Ni/h-boron nitride nanosheet catalysts. Applied Catalysis B: Environmental, 2018, 238, 51-60.	20.2	118
6	Catalytic Activity of Au and Au ₂ on the h-BN Surface: Adsorption and Activation of O ₂ . Journal of Physical Chemistry C, 2012, 116, 9054-9062.	3.1	84
7	DFT Studies on the Mechanisms of the Platinum-Catalyzed Diboration of Acyclic $\hat{l}\pm\langle i\rangle,\langle i\rangle\hat{l}^2\langle i\rangle-\langle i\rangle$ Unsaturated Carbonyl Compounds. Organometallics, 2012, 31, 3410-3425.	2.3	72
8	CO oxidation on h-BN supported Au atom. Journal of Chemical Physics, 2013, 138, 034701.	3.0	71
9	Delocalization Effect Promoted the Indoor Air Purification via Directly Unlocking the Ring-Opening Pathway of Toluene. Environmental Science & Environ	10.0	63
10	Long Range Functionalization of h-BN Monolayer by Carbon Doping. Journal of Physical Chemistry C, 2016, 120, 15993-16001.	3.1	42
11	Reactivity of Gold Clusters in the Regime of Structural Fluxionality. Journal of Physical Chemistry C, 2015, 119, 11120-11130.	3.1	40
12	Oxygen activation and dissociation on hâ€BN supported Au atoms. International Journal of Quantum Chemistry, 2013, 113, 443-452.	2.0	39
13	Photoinduced Copper-Catalyzed Asymmetric Acylation of Allylic Phosphates with Acylsilanes. Journal of the American Chemical Society, 2022, 144, 2218-2224.	13.7	39
14	Role of the Support Effects on the Catalytic Activity of Gold Clusters: A Density Functional Theory Study. Catalysts, 2011, 1, 18-39.	3.5	38
15	Suppression of pyrite oxidation by ferric-catecholate complexes: An electrochemical study. Minerals Engineering, 2019, 138, 226-237.	4.3	36
16	Application of Automated Reaction Path Search Methods to a Systematic Search of Single-Bond Activation Pathways Catalyzed by Small Metal Clusters: A Case Study on H–H Activation by Gold. Journal of Chemical Theory and Computation, 2014, 10, 1623-1630.	5. 3	28
17	Isomerization in Gold Clusters upon O ₂ Adsorption. Journal of Physical Chemistry C, 2017, 121, 2661-2668.	3.1	27
18	Doubly linked chiral phenanthrene oligomers for homogeneously π-extended helicenes with large effective conjugation length. Nature Communications, 2022, 13, 1475.	12.8	24

#	Article	IF	CITATIONS
19	When Inert Becomes Active: A Fascinating Route for Catalyst Design. Chemical Record, 2016, 16, 2324-2337.	5.8	22
20	CO ₂ Adsorption on Ti ₃ O ₆ [–] : A Novel Carbonate Binding Motif. Journal of Physical Chemistry C, 2019, 123, 8439-8446.	3.1	19
21	Combined Automated Reaction Pathway Searches and Sparse Modeling Analysis for Catalytic Properties of Lowest Energy Twins of Cu ₁₃ . Journal of Physical Chemistry A, 2019, 123, 210-217.	2.5	18
22	Catalytic Activity of Gold Clusters Supported on the h-BN/Au(111) Surface for the Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2021, 125, 1334-1344.	3.1	17
23	Excess charge driven dissociative hydrogen adsorption on Ti ₂ O ₄ ^{â°'} . Physical Chemistry Chemical Physics, 2017, 19, 23154-23161.	2.8	16
24	<scp> </scp> -Cysteine-Modified Acacia Gum as a Multifunctional Binder for Lithium–Sulfur Batteries. ACS Applied Materials & Company (1998) 11, 47956-47962.	8.0	16
25	Unraveling the promotional effects of NiCo catalysts over defective boron nitride nanosheets in dry reforming of methane. Catalysis Today, 2022, 402, 283-291.	4.4	11
26	Adsorption mediated tandem acid catalyzed cellulose hydrolysis by ortho-substituted benzoic acids. Molecular Catalysis, 2019, 475, 110459.	2.0	6
27	The h-BN surface effect on CO oxidation reaction catalyzed by supported gold atom. Journal of Physics: Conference Series, 2013, 438, 012003.	0.4	4
28	A quantum chemical study of substituent effects on CN bonds in aryl isocyanide molecules adsorbed on the Pt surface. Physical Chemistry Chemical Physics, 2020, 22, 12200-12208.	2.8	4
29	Effect of O2 adsorption on the termination of Li–O2 batteries discharge. Electrochimica Acta, 2020, 340, 135977.	5.2	4
30	Identifying Substrate-Dependent Chemical Bonding Nature at Molecule/Metal Interfaces Using Vibrational Sum Frequency Generation Spectroscopy and Theoretical Calculations. Journal of Physical Chemistry C, 2022, 126, 11298-11309.	3.1	3
31	Catalytic Functionalization of Hexagonal Boron Nitride for Oxidation and Epoxidation Reactions by Molecular Oxygen. Journal of Physical Chemistry C, 2021, 125, 19219-19228.	3.1	2