List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5871134/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Deep Brain Stimulation and Levodopa Affect Gait Variability in Parkinson Disease Differently. Neuromodulation, 2023, 26, 382-393.	0.4	5
2	Malignant middle cerebral artery syndrome with thrombotic thrombocytopenia following vaccination against SARS-CoV-2. Journal of the Intensive Care Society, 2022, 23, 479-484.	1.1	5
3	DyNeuMo Mk-1: Design and pilot validation of an investigational motion-adaptive neurostimulator with integrated chronotherapy. Experimental Neurology, 2022, 351, 113977.	2.0	22
4	Spatial and Temporal Distribution of Information Processing in the Human Dorsal Anterior Cingulate Cortex. Frontiers in Human Neuroscience, 2022, 16, 780047.	1.0	2
5	Deep Brain Stimulation of the Nucleus Accumbens in Severe Enduring Anorexia Nervosa: A Pilot Study. Frontiers in Behavioral Neuroscience, 2022, 16, 842184.	1.0	5
6	Commentary: Operative Technique and Lessons Learned From Surgical Implantation of the NeuroPace Responsive Neurostimulation® System in 57 Consecutive Patients. Operative Neurosurgery, 2021, 20, E110-E111.	0.4	2
7	Differential responses to breathâ€holding, voluntary deep breathing and hypercapnia in left and right dorsal anterior cingulate. Experimental Physiology, 2021, 106, 726-735.	0.9	4
8	Dorsal root ganglion stimulation: a new target for autonomic neuromodulation?. Clinical Autonomic Research, 2021, 31, 135-137.	1.4	3
9	Closed‣oop Deep Brain Stimulation for Essential Tremor Based on Thalamic Local Field Potentials. Movement Disorders, 2021, 36, 863-873.	2.2	52
10	Gait-Phase Modulates Alpha and Beta Oscillations in the Pedunculopontine Nucleus. Journal of Neuroscience, 2021, 41, 8390-8402.	1.7	11
11	Supraspinal Effects of Dorsal Root Ganglion Stimulation in Chronic Pain Patients. Neuromodulation, 2021, 24, 646-654.	0.4	2
12	Paired Acute Invasive/Non-invasive Stimulation (PAINS) study: A phase I/II randomized, sham-controlled crossover trial in chronic neuropathic pain. Brain Stimulation, 2021, 14, 1576-1585.	0.7	7
13	Neurophysiological characteristics in the periventricular/periaqueductal gray correlate with pain perception, sensation, and affect in neuropathic pain patients. NeuroImage: Clinical, 2021, 32, 102876.	1.4	2
14	Functional dynamics of thalamic local field potentials correlate with modulation of neuropathic pain. European Journal of Neuroscience, 2020, 51, 628-640.	1.2	13
15	Human Dorsal Root Ganglion Stimulation Reduces Sympathetic Outflow and Long-Term Blood Pressure. JACC Basic To Translational Science, 2020, 5, 973-985.	1.9	18
16	Dorsal Root Ganglion Stimulation for the Treatment of Chronic Neuropathic Knee Pain. World Neurosurgery, 2020, 143, e303-e308.	0.7	13
17	Using Deep Brain Stimulation to Unravel the Mysteries of Cardiorespiratory Control. , 2020, 10, 1085-1104.		10
18	Gamma knife radiosurgery for uveal melanomas and metastases: a systematic review and meta-analysis. Lancet Oncology, The, 2020, 21, 1526-1536.	5.1	20

#	Article	IF	CITATIONS
19	Dynamic changes in rhythmic and arrhythmic neural signatures in the subthalamic nucleus induced by anaesthesia and tracheal intubation. British Journal of Anaesthesia, 2020, 125, 67-76.	1.5	11
20	Neuromodulation for Intractable Pain. Brain Sciences, 2020, 10, 267.	1,1	1
21	Psychosurgery: History of the Neurosurgical Management of Psychiatric Disorders. World Neurosurgery, 2020, 137, 327-334.	0.7	4
22	Dorsal Root Ganglion Stimulation Modulates Cortical Gamma Activity in the Cognitive Dimension of Chronic Pain. Brain Sciences, 2020, 10, 95.	1.1	15
23	DyNeuMo Mk-2: An Investigational Circadian-Locked Neuromodulator with Responsive Stimulation for Applied Chronobiology. , 2020, 2020, 3433-3440.		29
24	Applying a Sensing-Enabled System for Ensuring Safe Anterior Cingulate Deep Brain Stimulation for Pain. Brain Sciences, 2019, 9, 150.	1,1	16
25	Sensory thalamus and periaqueductal grey area local field potential signals during bladder filling. Journal of Clinical Neuroscience, 2019, 68, 342-343.	0.8	2
26	The Central Autonomic Network and Regulation of Bladder Function. Frontiers in Neuroscience, 2019, 13, 535.	1.4	40
27	Rapid onset and short washout periods of dorsal root ganglion stimulation facilitate multiphase crossover study designs. Brain Stimulation, 2019, 12, 1617-1618.	0.7	5
28	Cardiovascular autonomic responses in patients with Parkinson disease to pedunculopontine deep brain stimulation. Clinical Autonomic Research, 2019, 29, 615-624.	1.4	14
29	The Use of Neuromodulation for Symptom Management. Brain Sciences, 2019, 9, 232.	1.1	3
30	The pedunculopontine region and breathing in Parkinson's disease. Annals of Clinical and Translational Neurology, 2019, 6, 837-847.	1.7	9
31	Decoding voluntary movements and postural tremor based on thalamic LFPs as a basis for closed-loop stimulation for essential tremor. Brain Stimulation, 2019, 12, 858-867.	0.7	61
32	Beta synchrony in the cortico-basal ganglia network during regulation of force control on and off dopamine. Neurobiology of Disease, 2019, 127, 253-263.	2.1	16
33	Letter to the editor: Thalamic deep brain stimulation may relieve breathlessness in COPD. Brain Stimulation, 2019, 12, 827-828.	0.7	2
34	Investigation of urinary storage symptoms in Parkinson's disease utilizing structural MRI techniques. Neurourology and Urodynamics, 2019, 38, 1168-1175.	0.8	14
35	Burst or Conventional Peripheral Nerve Field Stimulation for Treatment of Neuropathic Facial Pain. Neuromodulation, 2019, 22, 645-652.	0.4	13
36	Direct neurophysiological evidence for a role of the human anterior cingulate cortex in central command. Autonomic Neuroscience: Basic and Clinical, 2019, 216, 51-58.	1.4	15

#	Article	IF	CITATIONS
37	A clinical-grade gene therapy vector for pharmacoresistant epilepsy successfully overexpresses NPY in a human neuronal cell line. Seizure: the Journal of the British Epilepsy Association, 2018, 55, 25-29.	0.9	8
38	Beta oscillations and urinary voiding in Parkinson disease. Neurology, 2018, 90, e1530-e1534.	1.5	9
39	Effects of pedunculopontine nucleus stimulation on human bladder function. Neurourology and Urodynamics, 2018, 37, 726-734.	0.8	16
40	State of the Art: Novel Applications for Deep Brain Stimulation. Neuromodulation, 2018, 21, 126-134.	0.4	14
41	Unexpected Complications of Novel Deep Brain Stimulation Treatments: Ethical Issues and Clinical Recommendations. Neuromodulation, 2018, 21, 135-143.	0.4	26
42	The Efficacy and Safety of Dorsal Root Ganglion Stimulation as a Treatment for Neuropathic Pain: A Literature Review. Neuromodulation, 2018, 21, 225-233.	0.4	69
43	Oscillatory neural representations in the sensory thalamus predict neuropathic pain relief by deep brain stimulation. Neurobiology of Disease, 2018, 109, 117-126.	2.1	12
44	Modulation of Beta Bursts in the Subthalamic Nucleus Predicts Motor Performance. Journal of Neuroscience, 2018, 38, 8905-8917.	1.7	113
45	Alternating Modulation of Subthalamic Nucleus Beta Oscillations during Stepping. Journal of Neuroscience, 2018, 38, 5111-5121.	1.7	66
46	Dorsal Anterior Cingulate Cortices Differentially Lateralize Prediction Errors and Outcome Valence in a Decision-Making Task. Frontiers in Human Neuroscience, 2018, 12, 203.	1.0	16
47	Dynamic Neural State Identification in Deep Brain Local Field Potentials of Neuropathic Pain. Frontiers in Neuroscience, 2018, 12, 237.	1.4	11
48	The Current State of Deep Brain Stimulation for Chronic Pain and Its Context in Other Forms of Neuromodulation. Brain Sciences, 2018, 8, 158.	1.1	63
49	The Cognitive Role of the Globus Pallidus interna; Insights from Disease States. Experimental Brain Research, 2017, 235, 1455-1465.	0.7	32
50	Subthalamic nucleus beta and gamma activity is modulated depending on the level of imagined grip force. Experimental Neurology, 2017, 293, 53-61.	2.0	31
51	Stimulating at the right time: phase-specific deep brain stimulation. Brain, 2017, 140, 132-145.	3.7	213
52	Comparison of oscillatory activity in subthalamic nucleus in Parkinson's disease and dystonia. Neurobiology of Disease, 2017, 98, 100-107.	2.1	51
53	Uncovering the underlying mechanisms and whole-brain dynamics of deep brain stimulation for Parkinson's disease. Scientific Reports, 2017, 7, 9882.	1.6	79
54	Long-Term Results of Deep Brain Stimulation of the Anterior Cingulate Cortex for Neuropathic Pain. World Neurosurgery, 2017, 106, 625-637.	0.7	98

#	Article	IF	CITATIONS
55	Costâ€utility analysis alongside the PD SURG trial. Movement Disorders, 2017, 32, 631-632.	2.2	Ο
56	Distinct mechanisms mediate speed-accuracy adjustments in cortico-subthalamic networks. ELife, 2017, 6, .	2.8	71
57	Subthalamic nucleus gamma activity increases not only during movement but also during movement inhibition. ELife, 2017, 6, .	2.8	41
58	Deep Brain Stimulation for Parkinson's Disease with Early Motor Complications: A UK Cost-Effectiveness Analysis. PLoS ONE, 2016, 11, e0159340.	1.1	24
59	Comparing neurostimulation technologies in refractory focal-onset epilepsy. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 1174-1182.	0.9	55
60	Characteristics of local field potentials correlate with pain relief by deep brain stimulation. Clinical Neurophysiology, 2016, 127, 2573-2580.	0.7	19
61	Tractography Study of Deep Brain Stimulation of the Anterior Cingulate Cortex inÂChronic Pain: Key to Improve the Targeting. World Neurosurgery, 2016, 86, 361-370.e3.	0.7	22
62	Brainjacking: Implant Security Issues in Invasive Neuromodulation. World Neurosurgery, 2016, 92, 454-462.	0.7	95
63	Post-Traumatic Tremor and Thalamic Deep Brain Stimulation: Evidence for Use of Diffusion Tensor Imaging. World Neurosurgery, 2016, 96, 607.e7-607.e11.	0.7	6
64	Successful treatment of pelvic girdle pain with dorsal root ganglion stimulation. British Journal of Neurosurgery, 2016, 30, 685-686.	0.4	20
65	Subthalamic nucleus phase–amplitude coupling correlates with motor impairment in Parkinson's disease. Clinical Neurophysiology, 2016, 127, 2010-2019.	0.7	159
66	Decisions Made with Less Evidence Involve Higher Levels of Corticosubthalamic Nucleus Theta Band Synchrony. Journal of Cognitive Neuroscience, 2016, 28, 811-825.	1.1	18
67	Measuring complex behaviors of local oscillatory networks in deep brain local field potentials. Journal of Neuroscience Methods, 2016, 264, 25-32.	1.3	8
68	Decoding gripping force based on local field potentials recorded from subthalamic nucleus in humans. ELife, 2016, 5, .	2.8	41
69	Evidence from a rare case study for Hebbian-like changes in structural connectivity induced by long-term deep brain stimulation. Frontiers in Behavioral Neuroscience, 2015, 9, 167.	1.0	18
70	Tremor Reduction by Deep Brain Stimulation Is Associated With Gamma Power Suppression in Parkinson's Disease. Neuromodulation, 2015, 18, 349-354.	0.4	60
71	Subthalamic Nucleus Local Field Potential Activity Helps Encode Motor Effort Rather Than Force in Parkinsonism. Journal of Neuroscience, 2015, 35, 5941-5949.	1.7	39
72	Implementing novel trial methods to evaluate surgery for essential tremor. British Journal of Neurosurgery, 2015, 29, 334-339.	0.4	11

#	Article	IF	CITATIONS
73	A multicentre, prospective, randomized, controlled study to evaluate the use of a fibrin sealant as an adjunct to sutured dural repair. British Journal of Neurosurgery, 2015, 29, 11-17.	0.4	34
74	Neural Plasticity in Human Brain Connectivity: The Effects of Long Term Deep Brain Stimulation of the Subthalamic Nucleus in Parkinson's Disease. PLoS ONE, 2014, 9, e86496.	1.1	95
75	Anterior cingulotomy improves malignant mesothelioma pain and dyspnoea. British Journal of Neurosurgery, 2014, 28, 471-474.	0.4	30
76	The nature of tremor circuits in parkinsonian and essential tremor. Brain, 2014, 137, 3223-3234.	3.7	90
77	Control of the Lungs via the Human Brain Using Neurosurgery. Progress in Brain Research, 2014, 209, 341-366.	0.9	5
78	Targeting the Affective Component of Chronic Pain. Neurosurgery, 2014, 74, 628-637.	0.6	112
79	Ready for action: a role for the human midbrain in responding to infant vocalizations. Social Cognitive and Affective Neuroscience, 2014, 9, 977-984.	1.5	32
80	Deep Brain Stimulation as a Treatment for Neuropathic Pain: A Longitudinal Study Addressing Neuropsychological Outcomes. Journal of Pain, 2014, 15, 283-292.	0.7	32
81	Reciprocal interactions between the human thalamus and periaqueductal gray may be important for pain perception. Experimental Brain Research, 2014, 232, 527-534.	0.7	35
82	Deep Brain Stimulation Abolishes Slowing of Reactions to Unlikely Stimuli. Journal of Neuroscience, 2014, 34, 10844-10852.	1.7	22
83	Differentiated Baroreflex Modulation of Sympathetic Nerve Activity During Deep Brain Stimulation in Humans. Hypertension, 2014, 63, 1000-1010.	1.3	48
84	Dyspnea as a side effect of subthalamic nucleus deep brain stimulation for Parkinson's disease. Respiratory Physiology and Neurobiology, 2014, 192, 128-133.	0.7	15
85	Deep brain stimulation of the anterior cingulate cortex. NeuroReport, 2014, 25, 83-88.	0.6	71
86	Adaptive deep brain stimulation in advanced Parkinson disease. Annals of Neurology, 2013, 74, 449-457.	2.8	1,046
87	Complementary roles of different oscillatory activities in the subthalamic nucleus in coding motor effort in Parkinsonism. Experimental Neurology, 2013, 248, 187-195.	2.0	74
88	Elevated gamma band power in humans receiving naloxone suggests dorsal periaqueductal and periventricular gray deep brain stimulation produced analgesia is opioid mediated. Experimental Neurology, 2013, 239, 248-255.	2.0	26
89	Deep brain stimulation for pain. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2013, 116, 277-294.	1.0	31
90	Subthalamic Nucleus Local Field Potential Activity during the Eriksen Flanker Task Reveals a Novel Role for Theta Phase during Conflict Monitoring. Journal of Neuroscience, 2013, 33, 14758-14766.	1.7	99

#	Article	IF	CITATIONS
91	Long-term Outcomes of Deep Brain Stimulation for Neuropathic Pain. Neurosurgery, 2013, 72, 221-231.	0.6	161
92	A Role for the Subthalamic Nucleus in Response Inhibition during Conflict. Journal of Neuroscience, 2012, 32, 13396-13401.	1.7	137
93	Alpha oscillations in the pedunculopontine nucleus correlate with gait performance in parkinsonism. Brain, 2012, 135, 148-160.	3.7	141
94	Subthalamic nucleus activity optimizes maximal effort motor responses in Parkinson's disease. Brain, 2012, 135, 2766-2778.	3.7	59
95	Controlling the Lungs Via the Brain: A Novel Neurosurgical Method to Improve Lung Function in Humans. Neurosurgery, 2012, 70, 469-478.	0.6	27
96	The autonomic effects of deep brain stimulation—a therapeutic opportunity. Nature Reviews Neurology, 2012, 8, 391-400.	4.9	49
97	Measurement of muscle sympathetic nerve activity reveals true sympathetic changes in chronic pain. Experimental Physiology, 2012, 97, 1083-1083.	0.9	5
98	MEG Can Map Short and Long-Term Changes in Brain Activity following Deep Brain Stimulation for Chronic Pain. PLoS ONE, 2012, 7, e37993.	1.1	30
99	Switching off micturition using deep brain stimulation at midbrain sites. Annals of Neurology, 2012, 72, 144-147.	2.8	37
100	Heart Rate Variability in Functional Neurosurgery. , 2012, , 263-278.		0
101	Relencing the Brain, Resting State Networks and Deep Brain Stimulation, Frontiers in Integrative		
	Neuroscience, 2011, 5, 8.	1.0	63
102	Neuroscience, 2011, 5, 8. Identifying cardiovascular neurocircuitry involved in the exercise pressor reflex in humans using functional neurosurgery. Journal of Applied Physiology, 2011, 110, 881-891.	1.0	63 39
102 103	Neuroscience, 2011, 5, 8. Identifying cardiovascular neurocircuitry involved in the exercise pressor reflex in humans using functional neurosurgery. Journal of Applied Physiology, 2011, 110, 881-891. Deep Brain Stimulation of the Periaqueductal Grey Induces Vasodilation in Humans. Hypertension, 2011, 57, e24-5.	1.0 1.2 1.3	63 39 16
102 103 104	Neuroscience, 2011, 5, 8. Identifying cardiovascular neurocircuitry involved in the exercise pressor reflex in humans using functional neurosurgery. Journal of Applied Physiology, 2011, 110, 881-891. Deep Brain Stimulation of the Periaqueductal Grey Induces Vasodilation in Humans. Hypertension, 2011, 57, e24-5. Surgical Treatment of Dystonia. International Review of Neurobiology, 2011, 98, 573-589.	1.0 1.2 1.3 0.9	63 39 16 14
102 103 104	Neuroscience, 2011, 5, 8. Identifying cardiovascular neurocircuitry involved in the exercise pressor reflex in humans using functional neurosurgery. Journal of Applied Physiology, 2011, 110, 881-891. Deep Brain Stimulation of the Periaqueductal Grey Induces Vasodilation in Humans. Hypertension, 2011, 57, e24-5. Surgical Treatment of Dystonia. International Review of Neurobiology, 2011, 98, 573-589. Intra-Operative Deep Brain Stimulation of the Periaqueductal Grey Matter Modulates Blood Pressure and Heart Rate Variability in Humans. Neuromodulation, 2010, 13, 174-181.	1.0 1.2 1.3 0.9 0.4	 63 39 16 14 33
102 103 104 105	Neuroscience, 2011, 5, 8. Identifying cardiovascular neurocircuitry involved in the exercise pressor reflex in humans using functional neurosurgery. Journal of Applied Physiology, 2011, 110, 881-891. Deep Brain Stimulation of the Periaqueductal Grey Induces Vasodilation in Humans. Hypertension, 2011, 57, e24-5. Surgical Treatment of Dystonia. International Review of Neurobiology, 2011, 98, 573-589. Intra-Operative Deep Brain Stimulation of the Periaqueductal Grey Matter Modulates Blood Pressure and Heart Rate Variability in Humans. Neuromodulation, 2010, 13, 174-181. Sing the mind electric – principles of deep brain stimulation. European Journal of Neuroscience, 2010, 32, 1070-1079.	1.0 1.2 1.3 0.9 0.4 1.2	 63 39 16 14 33 50
102 103 104 105 106	Neuroscience, 2011, 5, 8. Identifying cardiovascular neurocircuitry involved in the exercise pressor reflex in humans using functional neurosurgery. Journal of Applied Physiology, 2011, 110, 881-891. Deep Brain Stimulation of the Periaqueductal Grey Induces Vasodilation in Humans. Hypertension, 2011, 57, e24-5. Surgical Treatment of Dystonia. International Review of Neurobiology, 2011, 98, 573-589. Intra-Operative Deep Brain Stimulation of the Periaqueductal Grey Matter Modulates Blood Pressure and Heart Rate Variability in Humans. Neuromodulation, 2010, 13, 174-181. Sing the mind electric â€ ^{ee} principles of deep brain stimulation. European Journal of Neuroscience, 2010, 32, 1070-1079. Sustained reduction of hypertension by deep brain stimulation. Journal of Clinical Neuroscience, 2010, 17, 124-127.	1.0 1.2 1.3 0.9 0.4 1.2 0.8	 63 39 16 14 33 50 57

#	Article	IF	CITATIONS
109	Identifying the Neurocircuitry Involved in the Exercise Pressor Reflex during Exercise in Humans. FASEB Journal, 2009, 23, 787.3.	0.2	0
110	Identification of neurocircuitry controlling cardiovascular function in humans using functional neurosurgery: implications for exercise control. Experimental Physiology, 2008, 93, 1022-1028.	0.9	44
111	STEREOTACTIC NEUROSURGERY IN THE UNITED KINGDOM. Neurosurgery, 2008, 63, 594-607.	0.6	22
112	Regional Cerebral Perfusion Differences between Periventricular Grey, Thalamic and Dual Target Deep Brain Stimulation for Chronic Neuropathic Pain. Stereotactic and Functional Neurosurgery, 2007, 85, 175-183.	0.8	49
113	Deep brain stimulation for chronic pain investigated with magnetoencephalography. NeuroReport, 2007, 18, 223-228.	0.6	92
114	Identifying cardiorespiratory neurocircuitry involved in central command during exercise in humans. Journal of Physiology, 2007, 578, 605-612.	1.3	73
115	Deep brain stimulation for the alleviation of post-stroke neuropathic pain. Pain, 2006, 120, 202-206.	2.0	161
116	Stimulating the human midbrain to reveal the link between pain and blood pressure. Pain, 2006, 124, 349-359.	2.0	74
117	Controlling the Heart Via the Brain: A Potential New Therapy for Orthostatic Hypotension. Neurosurgery, 2006, 58, 1176-1183.	0.6	46
118	Deep Brain Stimulation for Neuropathic Pain. Neuromodulation, 2006, 9, 100-106.	0.4	38
119_	Deep brain stimulation can regulate arterial blood pressure in awake humans. NeuroReport, 2005, 16, 1741-1745	0.6	95