
Sabine Groesch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5871083/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	T-Cell-Specific CerS4 Depletion Prolonged Inflammation and Enhanced Tumor Burden in the AOM/DSS-Induced CAC Model. International Journal of Molecular Sciences, 2022, 23, 1866.	1.8	12
2	Phosphatidylserine Synthase PTDSS1 Shapes the Tumor Lipidome to Maintain Tumor-Promoting Inflammation. Cancer Research, 2022, 82, 1617-1632.	0.4	11
3	Editorial for Special Issue "Lipid as a Cancer Therapeutic Target― International Journal of Molecular Sciences, 2021, 22, 3610.	1.8	0
4	Mouse Liver Compensates Loss of Sgpl1 by Secretion of Sphingolipids into Blood and Bile. International Journal of Molecular Sciences, 2021, 22, 10617.	1.8	4
5	Inhibitors of Human 5-Lipoxygenase Potently Interfere With Prostaglandin Transport. Frontiers in Pharmacology, 2021, 12, 782584.	1.6	7
6	Ceramide Synthase 5 Deficiency Aggravates Dextran Sodium Sulfate-Induced Colitis and Colon Carcinogenesis and Impairs T-Cell Activation. Cancers, 2020, 12, 1753.	1.7	17
7	The Lipid Status in Patients with Ulcerative Colitis: Sphingolipids are Disease-Dependent Regulated. Journal of Clinical Medicine, 2019, 8, 971.	1.0	22
8	UGCG influences glutamine metabolism of breast cancer cells. Scientific Reports, 2019, 9, 15665.	1.6	23
9	GPER1 influences cellular homeostasis and cytostatic drug resistance via influencing long chain ceramide synthesis in breast cancer cells. International Journal of Biochemistry and Cell Biology, 2019, 112, 95-106.	1.2	17
10	Ceramide synthases in cancer therapy and chemoresistance. Progress in Lipid Research, 2019, 74, 160-185.	5.3	39
11	Role of ceramide synthase 2 in G-CSF signaling and G-CSF-R translocation into detergent-resistant membranes. Scientific Reports, 2019, 9, 747.	1.6	1
12	UDP-glucose ceramide glucosyltransferase activates AKT, promoted proliferation, and doxorubicin resistance in breast cancer cells. Cellular and Molecular Life Sciences, 2018, 75, 3393-3410.	2.4	40
13	Sphingolipids in Inflammation. Mediators of Inflammation, 2018, 2018, 1-3.	1.4	12
14	The Many Facets of Sphingolipids in the Specific Phases of Acute Inflammatory Response. Mediators of Inflammation, 2018, 2018, 1-12.	1.4	25
15	Chemosensitivity of human colon cancer cells is influenced by a p53-dependent enhancement of ceramide synthase 5 and induction of autophagy. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 1214-1227.	1.2	35
16	The UDP-glucose ceramide glycosyltransferase (UGCG) and the link to multidrug resistance protein 1 (MDR1). BMC Cancer, 2018, 18, 153.	1.1	42
17	Ceramide synthase 2 deficiency aggravates AOM-DSS-induced colitis in mice: role of colon barrier integrity. Cellular and Molecular Life Sciences, 2017, 74, 3039-3055.	2.4	36
18	Investigational drugs targeting the prostaglandin E2 signaling pathway for the treatment of inflammatory pain. Expert Opinion on Investigational Drugs, 2017, 26, 51-61.	1.9	42

#	Article	IF	CITATIONS
19	R-Flurbiprofen Traps Prostaglandins within Cells by Inhibition of Multidrug Resistance-Associated Protein-4. International Journal of Molecular Sciences, 2017, 18, 68.	1.8	5
20	The enigma of ceramide synthase regulation in mammalian cells. Progress in Lipid Research, 2016, 63, 93-119.	5.3	101
21	Tetrahydrobiopterin Attenuates DSS-evoked Colitis in Mice by Rebalancing Redox and Lipid Signalling. Journal of Crohn's and Colitis, 2016, 10, 965-978.	0.6	22
22	Regulation of tumorigenic Wnt signaling by cyclooxygenase-2, 5-lipoxygenase and their pharmacological inhibitors: A basis for novel drugs targeting cancer cells?. , 2016, 157, 43-64.		36
23	MPGES-1-derived PGE2 suppresses CD80 expression on tumor-associated phagocytes to inhibit anti-tumor immune responses in breast cancer. Oncotarget, 2015, 6, 10284-10296.	0.8	48
24	Lack of ceramide synthase 2 suppresses the development of experimental autoimmune encephalomyelitis by impairing the migratory capacity of neutrophils. Brain, Behavior, and Immunity, 2015, 46, 280-292.	2.0	53
25	Exacerbation of experimental autoimmune encephalomyelitis in ceramide synthase 6 knockout mice is associated with enhanced activation/migration of neutrophils. Immunology and Cell Biology, 2015, 93, 825-836.	1.0	43
26	Ceramide synthases CerS4 and CerS5 are upregulated by 17β-estradiol and GPER1 via AP-1 in human breast cancer cells. Biochemical Pharmacology, 2014, 92, 577-589.	2.0	37
27	LPS inhibits caspase 3-dependent apoptosis in RAW264.7 macrophages induced by the AMPK activator AICAR. Biochemical and Biophysical Research Communications, 2014, 447, 520-525.	1.0	15
28	Regulation of ceramide synthase 6 in a spontaneous experimental autoimmune encephalomyelitis model is sex dependent. Biochemical Pharmacology, 2014, 92, 326-335.	2.0	20
29	PGE2/EP4 signaling in peripheral immune cells promotes development of experimental autoimmune encephalomyelitis. Biochemical Pharmacology, 2014, 87, 625-635.	2.0	25
30	Cysteinyl leukotriene-receptor-1 antagonists interfere with PGE2 synthesis by inhibiting mPGES-1 activity. Biochemical Pharmacology, 2013, 86, 286-296.	2.0	25
31	The equilibrium between long and very long chain ceramides is important for the fate of the cell and can be influenced by co-expression of CerS. International Journal of Biochemistry and Cell Biology, 2013, 45, 1195-1203.	1.2	64
32	Ceramide metabolism in mouse tissue. International Journal of Biochemistry and Cell Biology, 2013, 45, 1886-1894.	1.2	35
33	Structure–activity relationship andin vitropharmacological evaluation of imidazo[1,2-a]pyridine-based inhibitors of 5-LO. Future Medicinal Chemistry, 2013, 5, 865-880.	1.1	5
34	Synthesis and pharmacological characterization of benzenesulfonamides as dual species inhibitors of human and murine mPGES-1. Bioorganic and Medicinal Chemistry, 2013, 21, 7874-7883.	1.4	18
35	NSAIDs and Cancer. , 2013, , 2311-2316.		0
36	Synthesis of szentiamide, a depsipeptide from entomopathogenic <i>Xenorhabdus szentirmaii</i> with activity against <i>Plasmodium falciparum</i> . Beilstein Journal of Organic Chemistry, 2012, 8, 528-533.	1.3	42

#	Article	IF	CITATIONS
37	Ceramide Synthase 6 Plays a Critical Role in the Development of Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2012, 188, 5723-5733.	0.4	47
38	ldentification of DNA–protein complexes using an improved, combined western blotting-electrophoretic mobility shift assay (WEMSA) with a fluorescence imaging system. Molecular BioSystems, 2012, 8, 1389.	2.9	4
39	Chain length-specific properties of ceramides. Progress in Lipid Research, 2012, 51, 50-62.	5.3	402
40	Structure–Activity Relationship of Nonacidic Quinazolinone Inhibitors of Human Microsomal Prostaglandin Synthase 1 (mPGESÂ1). Journal of Medicinal Chemistry, 2012, 55, 3792-3803.	2.9	49
41	Long chain ceramides and very long chain ceramides have opposite effects on human breast and colon cancer cell growth. International Journal of Biochemistry and Cell Biology, 2012, 44, 620-628.	1.2	178
42	Inhibitors of specific ceramide synthases. Biochimie, 2012, 94, 558-565.	1.3	44
43	Dimethylcelecoxib induces an inhibitory complex consisting of HDAC1/NF-κB(p65)RelA leading to transcriptional downregulation of mPGES-1 and EGR1. Cellular Signalling, 2012, 24, 460-467.	1.7	17
44	Molecular characterization of EP6—A novel imidazo[1,2-a]pyridine based direct 5-lipoxygenase inhibitor. Biochemical Pharmacology, 2012, 83, 228-240.	2.0	25
45	The lipid lowering drug lovastatin protects against doxorubicin-induced hepatotoxicity. Toxicology and Applied Pharmacology, 2012, 261, 66-73.	1.3	52
46	Spherical Harmonics Coefficients for Ligand-Based Virtual Screening of Cyclooxygenase Inhibitors. PLoS ONE, 2011, 6, e21554.	1.1	8
47	Dimethylcelecoxib inhibits mPGES-1 promoter activity by influencing EGR1 and NF-ήB. Biochemical Pharmacology, 2010, 80, 1365-1372.	2.0	29
48	Activation of ceramide synthase 6 by celecoxib leads to a selective induction of C16:0-ceramide. Biochemical Pharmacology, 2010, 80, 1632-1640.	2.0	58
49	Nonacidic Inhibitors of Human Microsomal Prostaglandin Synthase 1 (mPGES 1) Identified by a Multistep Virtual Screening Protocol. Journal of Medicinal Chemistry, 2010, 53, 911-915.	2.9	34
50	The selective COX-2 inhibitor celecoxib modulates sphingolipid synthesis. Journal of Lipid Research, 2009, 50, 32-40.	2.0	63
51	Ceramide synthases and ceramide levels are increased in breast cancer tissue. Carcinogenesis, 2009, 30, 745-752.	1.3	186
52	Sphingosine kinase 2 deficient tumor xenografts show impaired growth and fail to polarize macrophages towards an antiâ€inflammatory phenotype. International Journal of Cancer, 2009, 125, 2114-2121.	2.3	94
53	Cellular membranes function as a storage compartment for celecoxib. Journal of Molecular Medicine, 2009, 87, 981-993.	1.7	23
54	Microarray analysis of altered sphingolipid metabolism reveals prognostic significance of sphingosine kinase 1 in breast cancer. Breast Cancer Research and Treatment, 2008, 112, 41-52.	1.1	280

#	Article	IF	CITATIONS
55	Dimethylcelecoxib inhibits prostaglandin E2 production. Biochemical Pharmacology, 2008, 76, 62-69.	2.0	29
56	The anti-proliferative potency of celecoxib is not a class effect of coxibs. Biochemical Pharmacology, 2008, 76, 179-187.	2.0	54
57	Celecoxib inhibits 5-lipoxygenase. Biochemical Pharmacology, 2008, 76, 862-872.	2.0	62
58	p53 is important for the anti-proliferative effect of ibuprofen in colon carcinoma cells. Biochemical and Biophysical Research Communications, 2008, 365, 698-703.	1.0	21
59	Prognostic relevance of alterations in sphingolipid metabolism in breast cancer. Journal of Clinical Oncology, 2008, 26, 11109-11109.	0.8	0
60	Modulation of Base Excision Repair Alters Cellular Sensitivity to UVA1 but not to UVB¶. Photochemistry and Photobiology, 2007, 75, 507-512.	1.3	0
61	NSAIDs and Cancer. , 2007, , 1453-1457.		0
62	Cyclooxygenase-2 (COX-2)–Independent Anticarcinogenic Effects of Selective COX-2 Inhibitors. Journal of the National Cancer Institute, 2006, 98, 736-747.	3.0	443
63	STAT1 phosphorylation and cleavage is regulated by the histamine (H4) receptor in human atopic and non-atopic lymphocytes. International Immunopharmacology, 2006, 6, 1577-1585.	1.7	30
64	Evidence of COX-2 independent induction of apoptosis and cell cycle block in human colon carcinoma cells after S- or R-ibuprofen treatment. European Journal of Pharmacology, 2006, 540, 24-33.	1.7	44
65	Induction of apoptosis by R-flurbiprofen in human colon carcinoma cells: involvement of p53. Biochemical Pharmacology, 2005, 69, 831-839.	2.0	24
66	Targeting the betaâ€catenin/APC pathway: a novel mechanism to explain the cyclooxygenaseâ€2â€independent anticarcinogenic effects of celecoxib in human colon carcinoma cells. FASEB Journal, 2005, 19, 1353-1355.	0.2	126
67	Comparison of two screening methods for in-house genotyping in clinical pharmacology units. International Journal of Clinical Pharmacology and Therapeutics, 2005, 43, 17-22.	0.3	2
68	Cyclooxygenase-2 (COX-2)-dependent and -independent anticarcinogenic effects of celecoxib in human colon carcinoma cells. Biochemical Pharmacology, 2004, 67, 1469-1478.	2.0	157
69	Effects of the selective COX-2 inhibitors celecoxib and rofecoxib on human vascular cells. Biochemical Pharmacology, 2004, 68, 341-350.	2.0	65
70	Induction of apoptosis in human prostate stromal cells by 4-hydroxytamoxifen: an alternative therapy for benign prostate hyperplasia. World Journal of Urology, 2004, 22, 452-456.	1.2	11
71	Single-step identification of all length polymorphisms in the UGT1A1 gene promoter. International Journal of Clinical Pharmacology and Therapeutics, 2004, 42, 133-138.	0.3	12
72	APE/Ref-1 and the mammalian response to genotoxic stress. Toxicology, 2003, 193, 67-78.	2.0	82

#	Article	IF	CITATIONS
73	Activation of câ€Junâ€Nâ€terminalâ€kinase is crucial for the induction of a cell cycle arrest in human colon carcinoma cells caused by flurbiprofen enantiomers. FASEB Journal, 2003, 17, 1316-1318.	0.2	43
74	Opposite Effects of Rofecoxib on Nuclear Factor-κB and Activating Protein-1 Activation. Journal of Pharmacology and Experimental Therapeutics, 2003, 304, 1153-1160.	1.3	45
75	G protein-independent G1 cell cycle block and apoptosis with morphine in adenocarcinoma cells: involvement of p53 phosphorylation. Cancer Research, 2003, 63, 1846-52.	0.4	100
76	The polymorphism A118G of the human mu-opioid receptor gene decreases the pupil constrictory effect of morphine-6-glucuronide but not that of morphine. Pharmacogenetics and Genomics, 2002, 12, 3-9.	5.7	201
77	Validation of a new fluorogenic real-time PCR assay for detection of CYP2C9 allelic variants and CYP2C9 allelic distribution in a German population. British Journal of Clinical Pharmacology, 2002, 54, 518-521.	1.1	52
78	Modulation of Base Excision Repair Alters Cellular Sensitivity to UVA1 but not to UVB¶. Photochemistry and Photobiology, 2002, 75, 507.	1.3	14
79	Inhibition of NF―κ B and APâ€1 activation by R―and Sâ€flurbiprofen ¹ ² . FASEB Jour 2001, 15, 595-597.	mal, 0 . 2	77
80	The Transfer Half-life of Morphine-6-glucuronide from Plasma to Effect Site Assessed by Pupil Size Measurement in Healthy Volunteers. Anesthesiology, 2001, 95, 1329-1338.	1.3	120
81	A rapid screening method for a single nucleotide polymorphism (SNP) in the human MOR gene. British Journal of Clinical Pharmacology, 2001, 52, 711-714.	1.1	24
82	COXâ€2 independent induction of cell cycle arrest and apoptosis in colon cancer cells by the selective COXâ€2 inhibitor celecoxib. FASEB Journal, 2001, 15, 1-22.	0.2	429
83	BER, MGMT, and MMR in defense against alkylation-induced genotoxicity and apoptosis. Progress in Molecular Biology and Translational Science, 2001, 68, 41-54.	1.9	82
84	Celecoxib loses its antiâ€inflammatory efficacy at high doses through activation of NFâ€îºB. FASEB Journal, 2001, 15, 1622-1624.	0.2	149
85	Inhibition of NFâ€KB and APâ€1 activation by R―and Sâ€flurbiprofen 1 , 2. FASEB Journal, 2001, 15, 2-4.	0.2	49
86	Transcriptional Activation of Apurinic/Apyrimidinic Endonuclease (Ape, Ref-1) by Oxidative Stress Requires CREB. Biochemical and Biophysical Research Communications, 1999, 261, 859-863.	1.0	71
87	Activation of c-Jun-N-terminal-kinase by R- and S-flurbiprofen results in cell cycle arrest in human colon carcinoma cells. , 0, 2002, .		Ο