
Jorge Verdu-Andres

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5870547/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Determination of caffeine in dietary supplements by miniaturized portable liquid chromatography. Journal of Chromatography A, 2022, 1664, 462770.	1.8	6
2	Capillary Liquid Chromatography for the Determination of Terpenes in Botanical Dietary Supplements. Pharmaceuticals, 2021, 14, 580.	1.7	3
3	Applications of the Photoionization Detector (PID) in Occupational Hygiene. Estimation of Air Changes per Hour in Premises with Natural Ventilation. Chemosensors, 2021, 9, 331.	1.8	3
4	On-line in-tube solid phase microextraction coupled to capillary liquid chromatography-diode array detection for the analysis of caffeine and its metabolites in small amounts of biological samples. Journal of Pharmaceutical and Biomedical Analysis, 2020, 178, 112914.	1.4	21
5	In-tube solid-phase microextraction. , 2020, , 387-427.		5
6	Exploring hand-portable nano-liquid chromatography for in place water analysis: Determination of trimethylxanthines as a use case. Science of the Total Environment, 2020, 747, 140966.	3.9	17
7	Innovations in Extractive Phases for In-Tube Solid-Phase Microextraction Coupled to Miniaturized Liquid Chromatography: A Critical Review. Molecules, 2020, 25, 2460.	1.7	23
8	Establishing the occurrence and profile of polycyclic aromatic hydrocarbons in marine sediments: The eastern Mediterranean coast of Spain as a case study. Marine Pollution Bulletin, 2019, 142, 206-215.	2.3	3
9	Exploring New Extractive Phases for In-Tube Solid Phase Microextraction Coupled to Miniaturized Liquid Chromatography. Separations, 2019, 6, 12.	1.1	11
10	Quantifying both ammonium and proline in wines and beer by using a PDMS composite for sensoring. Talanta, 2019, 198, 371-376.	2.9	7
11	Quantitative Analysis of Terpenic Compounds in Microsamples of Resins by Capillary Liquid Chromatography. Molecules, 2019, 24, 4068.	1.7	6
12	Cotton swabs supported in-situ assay for quaternary ammonium compounds residues in effluents and surfaces. Food Control, 2018, 84, 419-428.	2.8	6
13	New Calibration Model: Combining Integrated Calibration Method and H-point Standard Addition Method to Detect and Avoid Interference Effects. Analytical Letters, 2018, 51, 1194-1207.	1.0	7
14	Analysis of Contact Traces of Cannabis by In-Tube Solid-Phase Microextraction Coupled to Nanoliquid Chromatography. Molecules, 2018, 23, 2359.	1.7	28
15	Improving the On-Line Extraction of Polar Compounds by IT-SPME with Silica Nanoparticles Modified Phases. Separations, 2018, 5, 10.	1.1	15
16	A new tool for direct non-invasive evaluation of chlorophyll a content from diffuse reflectance measurements. Science of the Total Environment, 2017, 609, 370-376.	3.9	8
17	Trends in Online Intube Solid Phase Microextraction. Comprehensive Analytical Chemistry, 2017, , 427-461.	0.7	13
18	New optical paper sensor for in situ measurement of hydrogen sulphide in waters and atmospheres. Talanta, 2016, 156-157, 79-86.	2.9	36

Jorge Verdu-Andres

#	Article	IF	CITATIONS
19	Determination of amphetamines in hair by integrating sample disruption, clean-up and solid phase derivatization. Journal of Chromatography A, 2016, 1447, 47-56.	1.8	18
20	Simplifying Iron Determination with o-Phenanthroline in Food Ashes Using 2-Nitrophenol as an Acid-Base Indicator. Food Analytical Methods, 2016, 9, 1150-1154.	1.3	6
21	New Tools for Characterizing Metallic Nanoparticles: AgNPs, A Case Study. Analytical Chemistry, 2016, 88, 1485-1493.	3.2	15
22	Disinfection byâ€products effect on swimmers oxidative stress and respiratory damage. European Journal of Sport Science, 2016, 16, 609-617.	1.4	9
23	Designing solid optical sensors for in situ passive discrimination of volatile amines based on a new one-step hydrophilic PDMS preparation. Sensors and Actuators B: Chemical, 2016, 223, 333-342.	4.0	24
24	Microextraction with phases containing nanoparticles. Bioanalysis, 2015, 7, 2163-2170.	0.6	5
25	Recent advances of in-tube solid-phase microextraction. TrAC - Trends in Analytical Chemistry, 2015, 71, 205-213.	5.8	121
26	Analysis of polar triazines and degradation products in waters by in-tube solid-phase microextraction and capillary chromatography: an environmentally friendly method. Analytical and Bioanalytical Chemistry, 2015, 407, 1485-1497.	1.9	28
27	Selective and sentivive method based on capillary liquid chromatography with in-tube solid phase microextraction for determination of monochloramine in water. Journal of Chromatography A, 2015, 1388, 17-23.	1.8	20
28	Development of a polydimethylsiloxane–thymol/nitroprusside composite based sensor involving thymol derivatization for ammonium monitoring in water samples. Science of the Total Environment, 2015, 503-504, 105-112.	3.9	17
29	A cost-effective method for estimating di(2-ethylhexyl)phthalate in coastal sediments. Journal of Chromatography A, 2014, 1324, 57-62.	1.8	20
30	In Situ Colorimetric Quantification of Silver Cations in the Presence of Silver Nanoparticles. Analytical Chemistry, 2013, 85, 10013-10016.	3.2	45
31	Study of the influence of temperature and precipitations on the levels of BTEX in natural waters. Journal of Hazardous Materials, 2013, 263, 131-138.	6.5	20
32	More about sampling and estimation of mercaptans in air samples. Talanta, 2013, 106, 127-132.	2.9	3
33	Cleaning sorbents used in matrix solid-phase dispersion with sonication: Application to the estimation of polycyclic aromatic hydrocarbons at ng/g levels in marine sediments. Journal of Chromatography A, 2012, 1263, 43-50.	1.8	12
34	Advantages of monolithic over particulate columns for multiresidue analysis of organic pollutants by in-tube solid-phase microextraction coupled to capillary liquid chromatography. Journal of Chromatography A, 2011, 1218, 6256-6262.	1.8	35
35	In-tube solid-phase microextraction coupled by in valve mode to capillary LC-DAD: Improving detectability to multiresidue organic pollutants analysis in several whole waters. Journal of Chromatography A, 2010, 1217, 2695-2702.	1.8	46
36	On-line determination of aliphatic amines in water using in-tube solid-phase microextraction-assisted derivatisation in in-valve mode for processing large sample volumes in LC. Analytical and Bioanalytical Chemistry, 2009, 394, 557-565.	1.9	28

#	Article	IF	CITATIONS
37	New micromethod combining miniaturized matrix solid-phase dispersion and in-tube in-valve solid-phase microextraction for estimating polycyclic aromatic hydrocarbons in bivalves. Journal of Chromatography A, 2008, 1211, 13-21.	1.8	54
38	Chemiluminescent Method for Detection of Eutrophication Sources by Estimation of Organic Amino Nitrogen and Ammonium in Water. Analytical Chemistry, 2006, 78, 7504-7510.	3.2	8
39	An evaluation of solid phase microextraction for aliphatic amines using derivatization with 9-fluorenylmethyl chloroformate and liquid chromatography. Journal of Chromatography A, 2006, 1104, 40-46.	1.8	58
40	Collaborative study of an liquid chromatographic method for the determination of R-timolol and other related substances in S-timolol maleate. Analytica Chimica Acta, 2005, 546, 182-192.	2.6	17
41	Determination of ammonia and primary amine compounds and Kjeldahl nitrogen in water samples with a modified Roth's fluorimetric method. Talanta, 2005, 65, 869-875.	2.9	35
42	Enantioselective Analysis of Amphetamine-Related Designer Drugs in Body Fluids Using Liquid Chromatography and Solid-Phase Derivatization. Chromatographia, 2004, 60, 537-544.	0.7	6
43	Sensitive determination of aliphatic amines in water by high-performance liquid chromatography with chemiluminescence detection. Journal of Chromatography A, 2004, 1035, 75-82.	1.8	36
44	Evaluation of C18 adsorbent cartridges for sampling and derivatization of primary amines in air. Analytica Chimica Acta, 2004, 502, 235-239.	2.6	12
45	Separation of the enantiomers of primary and secondary amphetamines by liquid chromatography after derivatization with (â^')-1-(9-fluorenyl)ethyl chloroformate. Chromatographia, 2003, 57, 309-316.	0.7	9
46	Strategies for the enantiomeric determination of amphetamine and related compounds by liquid chromatography. Journal of Proteomics, 2002, 54, 147-167.	2.4	32
47	Liquid chromatographic determination of aliphatic amines in water using solid support assisted derivatization with 9-fluorenylmethyl chloroformate. Chromatographia, 2002, 55, 129-134.	0.7	33
48	Enantiomeric separation of amphetamine and related compounds by liquid chromatography using precolumn derivatization witho-phthaldialdehyde. Chromatographia, 2002, 56, 559-565.	0.7	6
49	Determination of aliphatic amines in water by liquid chromatography using solid-phase extraction cartridges for preconcentration and derivatization. Analyst, The, 2001, 126, 1683-1688.	1.7	28
50	Sensitive determination of methylenedioxylated amphetamines by liquid chromatography. Analyst, The, 2001, 126, 581-586.	1.7	26
51	Multivariate versus univariate calibration for nonlinear chemiluminescence data. Analytica Chimica Acta, 2001, 450, 155-173.	2.6	13
52	Analysis of enantiomers giving partially overlapped peaks by using different treatments of the chromatographic ultraviolet signals: quantification of pseudoephedrine enantiomers. Journal of Chromatography A, 2001, 930, 95-107.	1.8	10
53	Comparison of Multivariate Calibration Techniques Applied to Experimental NIR Data Sets. Applied Spectroscopy, 2000, 54, 608-623.	1.2	81
54	Correction of non-linearities in spectroscopic multivariate calibration by using transformed original variables. Part II. Application to principal component regression. Analytica Chimica Acta, 1999, 389, 115-130.	2.6	13

Jorge Verdu-Andres

#	Article	IF	CITATIONS
55	Systematic Study of Several Causes and Effects Due to Absorbent Blanks in Determinations of One Analyte. Mikrochimica Acta, 1999, 131, 159-170.	2.5	1
56	Analyte estimation using the generalized H-point standard additions method and a new methodology for locating linear spectral intervals for unknown interferents. Journal of Chemometrics, 1998, 12, 27-40.	0.7	13
57	A new method of detecting clustering in the data. Chemometrics and Intelligent Laboratory Systems, 1998, 41, 145-160.	1.8	10
58	Comparison of Prediction- and Correlation-Based Methods to Select the Best Subset of Principal Components for Principal Component Regression and Detect Outlying Objects. Applied Spectroscopy, 1998, 52, 1425-1434.	1.2	27
59	Evaluation and elimination of the blank bias error using the H-point standard additions method (HPSAM) in the simultaneous spectrophotometric determination of two analytes. Analytica Chimica Acta, 1997, 348, 39-49.	2.6	16
60	Correction of non-linearities in spectroscopic multivariate calibration by using transformed original variables and PLS regression. Analytica Chimica Acta, 1997, 349, 271-282.	2.6	25
61	H-point standard additions method for resolution of overlapped chromatographic peaks with a conventional fluorescence detector. Determination of phenol and cresols in waters. Chromatographia, 1996, 42, 283-289.	0.7	9
62	Generalized H-point standard additions method for analyte determinations in unknown samples. Analytica Chimica Acta, 1995, 302, 323-333.	2.6	51
63	H-Point standard additions method for resolution of binary mixtures with simultaneous addition of both analytes. Analytica Chimica Acta, 1995, 315, 267-278.	2.6	35
64	Preconcentration, Sample Clean-Up, and HPLC Determination of Phenol and its Chloro, Methyl, and Nitro Derivatives in Biological Samples. A Review. Journal of Liquid Chromatography and Related Technologies, 1995, 18, 2229-2241.	0.9	10
65	H-point standard additions method for analyte determination in ternary mixtures. Analyst, The, 1995, 120, 299-304.	1.7	38
66	Development of the H-point standard additions method for the use of spectrofluorimetry and synchronous spectrofluorimetry. Analyst, The, 1994, 119, 2123-2127.	1.7	33
67	Study of the behaviour of the absorbent blanks in analytical procedures by using the H-Point standard additions method (HPSAM). Talanta, 1994, 41, 39-52.	2.9	47
68	Elimination of the unknown irrelevant matrix absorbance by using the H-Point Standard Additions Method (HPSAM). Talanta, 1994, 41, 1569-1576.	2.9	5
69	Development of the H-point standard additions method for analyte determinations in unknown matrix. Analytica Chimica Acta, 1993, 283, 831-844.	2.6	30
70	Application of the H-point standard additions method by using absorbance increment values as analytical signals. Talanta, 1992, 39, 1-7.	2.9	27
71	Evaluation and elimination of the "blank bias error―using the H-point standard addition method. Analytica Chimica Acta, 1992, 270, 253-265.	2.6	56