Xiaoping Xin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5870160/publications.pdf

Version: 2024-02-01

		759233	940533
16	528	12	16
papers	citations	h-index	g-index
16	16	16	670
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Copper stress alleviation in corn (Zea mays L.): Comparative efficiency of carbon nanotubes and carbon nanoparticles. NanoImpact, 2022, 25, 100381.	4.5	13
2	Carbon nanoparticles improve corn (Zea mays L.) growth and soil quality: Comparison of foliar spray and soil drench application. Journal of Cleaner Production, 2022, 363, 132630.	9.3	18
3	Use of Carbon Nanoparticles to Improve Soil Fertility, Crop Growth and Nutrient Uptake by Corn (Zea) Tj ETQq $1\ 1$. 0.784314 4.1	∤rgBT /Ov <mark>er</mark> 1
4	Transport and retention of polymeric and other engineered nanoparticles in porous media. NanoImpact, 2021, 24, 100361.	4.5	6
5	Use of polymeric nanoparticles to improve seed germination and plant growth under copper stress. Science of the Total Environment, 2020, 745, 141055.	8.0	44
6	Nano-enabled agriculture: from nanoparticles to smart nanodelivery systems. Environmental Chemistry, 2020, 17, 413.	1.5	58
7	Comparative assessment of polymeric and other nanoparticles impacts on soil microbial and biochemical properties. Geoderma, 2020, 367, 114278.	5.1	30
8	Efficiency of Biodegradable and pHâ€Responsive Polysuccinimide Nanoparticles (PSIâ€NPs) as Smart Nanodelivery Systems in Grapefruit: In Vitro Cellular Investigation. Macromolecular Bioscience, 2018, 18, e1800159.	4.1	28
9	Phosphorus Availability and Release Pattern from Activated Dolomite Phosphate Rock in Central Florida. Journal of Agricultural and Food Chemistry, 2017, 65, 4589-4596.	5.2	18
10	Manganese oxide affects nitrification and <scp>N</scp> ₂ <scp>O</scp> emissions in a subtropical paddy soil with variable water regimes. European Journal of Soil Science, 2017, 68, 749-757.	3.9	13
11	Effect of iron oxide on nitrification in two agricultural soils with different pH. Biogeosciences, 2016, 13, 5609-5617.	3.3	31
12	Autotrophic and Heterotrophic Nitrification in a Highly Acidic Subtropical Pine Forest Soil. Pedosphere, 2016, 26, 904-910.	4.0	18
13	Manganese oxide affects nitrification and ammonia oxidizers in subtropical and temperate acid forest soils. Catena, 2016, 137, 24-30.	5.0	12
14	Effects of Fe oxide on N transformations in subtropical acid soils. Scientific Reports, 2015, 5, 8615.	3.3	15
15	pH regulates key players of nitrification in paddy soils. Soil Biology and Biochemistry, 2015, 81, 9-16.	8.8	164
16	Distribution of nitrifiers and nitrification associated with different sizes of aggregates along a 2000year chronosequence of rice cultivation. Catena, 2014, 119, 71-77.	5.0	4