List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5870147/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Survival benefit of hyperthermia in a prospective randomized trial of brachytherapy boost ± hyperthermia for glioblastoma multiforme. International Journal of Radiation Oncology Biology Physics, 1998, 40, 287-295.	0.8	357
2	Thermal ablation and high-temperature thermal therapy: Overview of technology and clinical implementation. International Journal of Hyperthermia, 2005, 21, 745-753.	2.5	269
3	Ultrasound technology for hyperthermia. Ultrasound in Medicine and Biology, 1999, 25, 871-887.	1.5	198
4	Simulation techniques in hyperthermia treatment planning. International Journal of Hyperthermia, 2013, 29, 346-357.	2.5	160
5	MRI-guided thermal therapy of transplanted tumors in the canine prostate using a directional transurethral ultrasound applicator. Journal of Magnetic Resonance Imaging, 2002, 15, 409-417.	3.4	99
6	MR-guided focused ultrasound surgery, present and future. Medical Physics, 2013, 40, 080901.	3.0	97
7	Transurethral ultrasound applicators with directional heating patterns for prostate thermal therapy:In vivoevaluation using magnetic resonance thermometry. Medical Physics, 2004, 31, 405-413.	3.0	96
8	Two phase I dose-escalation/pharmacokinetics studies of low temperature liposomal doxorubicin (LTLD) and mild local hyperthermia in heavily pretreated patients with local regionally recurrent breast cancer. International Journal of Hyperthermia, 2014, 30, 285-294.	2.5	93
9	Quality assurance guidelines for superficial hyperthermia clinical trials: I. Clinical requirements. International Journal of Hyperthermia, 2017, 33, 471-482.	2.5	86
10	Ultrasound applicators with integrated catheter-cooling for interstitial hyperthermia: Theory and preliminary experiments. International Journal of Hyperthermia, 1996, 12, 279-297.	2.5	85
11	Acute Biomechanical and Histological Effects of Intradiscal Electrothermal Therapy on Human Lumbar Discs. Spine, 2001, 26, 2198-2207.	2.0	84
12	Quality assurance guidelines for superficial hyperthermia clinical trials. Strahlentherapie Und Onkologie, 2017, 193, 351-366.	2.0	73
13	Magnetic Resonance-Guided High-Intensity Ultrasound Ablation of the Prostate. Topics in Magnetic Resonance Imaging, 2006, 17, 195-207.	1.2	71
14	Referenceless MR Thermometry for Monitoring Thermal Ablation in the Prostate. IEEE Transactions on Medical Imaging, 2007, 26, 813-821.	8.9	71
15	Highly directional transurethral ultrasound applicators with rotational control for MRI-guided prostatic thermal therapy. Physics in Medicine and Biology, 2004, 49, 189-204.	3.0	70
16	Considerations for theoretical modelling of thermal ablation with catheter-based ultrasonic sources: Implications for treatment planning, monitoring and control. International Journal of Hyperthermia, 2012, 28, 69-86.	2.5	69
17	Evaluation of multielement catheter-cooled interstitial ultrasound applicators for high-temperature thermal therapy. Medical Physics, 2001, 28, 1525-1534.	3.0	61
18	Interleaved echo-planar imaging for fast multiplanar magnetic resonance temperature imaging of ultrasound thermal ablation therapy. Journal of Magnetic Resonance Imaging, 2004, 20, 706-714.	3.4	57

#	Article	IF	CITATIONS
19	Curvilinear transurethral ultrasound applicator for selective prostate thermal therapy. Medical Physics, 2005, 32, 1555-1565.	3.0	55
20	Monitoring prostate thermal therapy with diffusionâ€weighted MRI. Magnetic Resonance in Medicine, 2008, 59, 1365-1372.	3.0	55
21	Induction of hyperthermia using an intracavitary multielement ultrasonic applicator. IEEE Transactions on Biomedical Engineering, 1989, 36, 432-438.	4.2	51
22	Multiplanar MR temperature-sensitive imaging of cerebral thermal treatment using interstitial ultrasound applicators in a canine model. Journal of Magnetic Resonance Imaging, 2002, 16, 522-531.	3.4	51
23	MRI-guided interstitial ultrasound thermal therapy of the prostate: A feasibility study in the canine model. Medical Physics, 2005, 32, 733-743.	3.0	51
24	Clinical applications of custom-made vaginal cylinders constructed using three-dimensional printing technology. Journal of Contemporary Brachytherapy, 2016, 3, 208-214.	0.9	49
25	Direct-coupled interstitial ultrasound applicators for simultaneous thermobrachytherapy: a feasibility study. International Journal of Hyperthermia, 1996, 12, 401-419.	2.5	48
26	Combination of transurethral and interstitial ultrasound applicators for high-temperature prostate thermal therapy. International Journal of Hyperthermia, 2000, 16, 385-403.	2.5	47
27	Heat-induced changes in porcine annulus fibrosus biomechanics. Journal of Biomechanics, 2004, 37, 233-240.	2.1	47
28	Theoretical model of internally cooled interstitial ultrasound applicators for thermal therapy. Physics in Medicine and Biology, 2002, 47, 1073-1089.	3.0	46
29	Pre-clinical evaluation of a microwave planar array applicator for superficial hyperthermia. International Journal of Hyperthermia, 1993, 9, 227-246.	2.5	45
30	Transurethral ultrasound applicators with dynamic multiâ€sector control for prostate thermal therapy: <i>In vivo</i> evaluation under MR guidance. Medical Physics, 2008, 35, 2081-2093.	3.0	45
31	Conformal microwave array (CMA) applicators for hyperthermia of diffuse chest wall recurrence. International Journal of Hyperthermia, 2010, 26, 686-698.	2.5	45
32	Directional power deposition from direct-coupled and catheter-cooled interstitial ultrasound applicators. International Journal of Hyperthermia, 2000, 16, 129-144.	2.5	44
33	The development of intracavitary ultrasonic applicators for hyperthermia: A design and experimental study. Medical Physics, 1990, 17, 626-634.	3.0	42
34	Ultrasound applicators with internal water-cooling for high-powered interstitial thermal therapy. IEEE Transactions on Biomedical Engineering, 2000, 47, 1356-1365.	4.2	38
35	Thermal and SAR characterization of multielement dual concentric conductor microwave applicators for hyperthermia, a theoretical investigation. Medical Physics, 2000, 27, 745-753.	3.0	37
36	Catheter-based ultrasound applicators for selective thermal ablation: progress towards MRI-guided applications in prostate. International Journal of Hyperthermia, 2004, 20, 739-756.	2.5	37

#	Article	IF	CITATIONS
37	Effects of spatial and temporal resolution for MR image-guided thermal ablation of prostate with transurethral ultrasound. Journal of Magnetic Resonance Imaging, 2005, 22, 109-118.	3.4	37
38	Optimisation-based thermal treatment planning for catheter-based ultrasound hyperthermia. International Journal of Hyperthermia, 2010, 26, 39-55.	2.5	37
39	Control of interstitial thermal coagulation: Comparative evaluation of microwave and ultrasound applicators. Medical Physics, 2001, 28, 104-117.	3.0	36
40	Ultrasound-Enhanced Penetration of Topical Riboflavin Into the Corneal Stroma. , 2013, 54, 5908.		36
41	Angular directivity of thermal coagulation using air-cooled direct-coupled interstitial ultrasound applicators. Ultrasound in Medicine and Biology, 1999, 25, 609-622.	1.5	33
42	Evaluation of temperature distributions in cadaveric lumbar spine during nucleoplasty. Physics in Medicine and Biology, 2004, 49, 1583-1594.	3.0	31
43	Prostate thermal therapy with high intensity transurethral ultrasound: The impact of pelvic bone heating on treatment delivery. International Journal of Hyperthermia, 2007, 23, 609-622.	2.5	31
44	Air-cooling of direct-coupled ultrasound applicators for interstitial hyperthermia and thermal coagulation. Medical Physics, 1998, 25, 2400-2409.	3.0	28
45	Temperature and Thermal Dose Distributions During Intradiscal Electrothermal Therapy in the Cadaveric Lumbar Spine. Spine, 2003, 28, 1700-1708.	2.0	28
46	Two-dimensional acoustic attenuation mapping of high-temperature interstitial ultrasound lesions. Physics in Medicine and Biology, 2004, 49, 533-546.	3.0	28
47	Catheter-based ultrasound technology for image-guided thermal therapy: Current technology and applications. International Journal of Hyperthermia, 2015, 31, 203-215.	2.5	28
48	Multisectored interstitial ultrasound applicators for dynamic angular control of thermal therapy. Medical Physics, 2006, 33, 1352-1363.	3.0	26
49	Implant strategies for endocervical and interstitial ultrasound hyperthermia adjunct to HDR brachytherapy for the treatment of cervical cancer. Physics in Medicine and Biology, 2011, 56, 3967-3984.	3.0	26
50	Components of a hyperthermia clinic: Recommendations for staffing, equipment, and treatment monitoring. International Journal of Hyperthermia, 2014, 30, 1-5.	2.5	26
51	Effect of practical layered dielectric loads on SAR patterns from dual concentric conductor microstrip antennas. International Journal of Hyperthermia, 1998, 14, 553-571.	2.5	25
52	The ACUSITT ultrasonic ablator: the first steerable needle with an integrated interventional tool. Proceedings of SPIE, 2010, , .	0.8	25
53	Modelling of endoluminal and interstitial ultrasound hyperthermia and thermal ablation: Applications for device design, feedback control and treatment planning. International Journal of Hyperthermia, 2013, 29, 296-307.	2.5	25
54	Interstitial ultrasound ablation of vertebral and paraspinal tumours: Parametric and patient-specific simulations. International Journal of Hyperthermia, 2014, 30, 228-244.	2.5	23

#	Article	IF	CITATIONS
55	Quantifying temperature-dependent T ₁ changes in cortical bone using ultrashort echo-time MRI. Magnetic Resonance in Medicine, 2015, 74, 1548-1555.	3.0	22
56	Endocervical ultrasound applicator for integrated hyperthermia and HDR brachytherapy in the treatment of locally advanced cervical carcinoma. Medical Physics, 2011, 38, 598-611.	3.0	20
57	Minimax optimization-based inverse treatment planning for interstitial thermal therapy. International Journal of Hyperthermia, 1998, 14, 347-366.	2.5	19
58	Novel catheter technology for ablative cure of atrial fibrillation. Journal of Interventional Cardiac Electrophysiology, 2000, 4, 127-139.	1.3	19
59	Multiple applicator hepatic ablation with interstitial ultrasound devices: Theoretical and experimental investigation. Medical Physics, 2012, 39, 7338-7349.	3.0	19
60	Applicators for Magnetic Resonance–Guided Ultrasonic Ablation of Benign Prostatic Hyperplasia. Investigative Radiology, 2013, 48, 387-394.	6.2	19
61	Modelâ€based feasibility assessment and evaluation of prostate hyperthermia with a commercial MRâ€guided endorectal HIFU ablation array. Medical Physics, 2014, 41, 033301.	3.0	19
62	Thermal therapy of pancreatic tumours using endoluminal ultrasound: Parametric and patient-specific modelling. International Journal of Hyperthermia, 2016, 32, 97-111.	2.5	19
63	Hyperthermia classic commentary: â€~Arrhenius relationships from the molecule and cell to the clinic' by William Dewey, <i>Int. J. Hyperthermia</i> , 10:457–483, 1994. International Journal of Hyperthermia, 2009, 25, 21-24.	2.5	18
64	Title is missing!. Spine, 2003, 28, 1700-1708.	2.0	17
65	Effect of applicator diameter on lesion size from high temperature interstitial ultrasound thermal therapy. Medical Physics, 2003, 30, 1855-1863.	3.0	16
66	Approaches for modelling interstitial ultrasound ablation of tumours within or adjacent to bone: Theoretical and experimental evaluations. International Journal of Hyperthermia, 2013, 29, 629-642.	2.5	16
67	MR thermometry-guided ultrasound hyperthermia of user-defined regions using the ExAblate prostate ablation array. Journal of Therapeutic Ultrasound, 2018, 6, 7.	2.2	16
68	Intradiscal Thermal Therapy Does Not Stimulate Biologic Remodeling in an In Vivo Sheep Model. Spine, 2006, 31, 139-145.	2.0	15
69	Catheter-based ultrasound hyperthermia with HDR brachytherapy for treatment of locally advanced cancer of the prostate and cervix. Proceedings of SPIE, 2011, 7901, 790100.	0.8	15
70	Focal ablation of prostate cancer: four roles for magnetic resonance imaging guidance. Canadian Journal of Urology, 2013, 20, 6672-81.	0.0	15
71	Epicardial Catheter Ablation Using High-Intensity Ultrasound. Circulation: Arrhythmia and Electrophysiology, 2015, 8, 1491-1497.	4.8	12
72	A minimally invasive catheter-based ultrasound technology for therapeutic interventions in brain: initial preclinical studies. Neurosurgical Focus, 2018, 44, E13.	2.3	11

#	Article	IF	CITATIONS
73	Assessing highâ€intensity focused ultrasound treatment of prostate cancer with hyperpolarized ¹³ C dualâ€agent imaging of metabolism and perfusion. NMR in Biomedicine, 2019, 32, e3962.	2.8	10
74	Endoluminal ultrasound applicators for MRâ€guided thermal ablation of pancreatic tumors: Preliminary design and evaluation in a porcine pancreas model. Medical Physics, 2016, 43, 4184-4197.	3.0	9
75	AAPM Task Group 241: A medical physicist's guide to MRIâ€guided focused ultrasound body systems. Medical Physics, 2021, 48, e772-e806.	3.0	9
76	Feasibility of using interstitial ultrasound for intradiscal thermal therapy: a study in human cadaver lumbar discs. Physics in Medicine and Biology, 2005, 50, 2807-2821.	3.0	8
77	Catheter-based ultrasound devices and MR thermal monitoring for conformal prostate thermal therapy. , 2008, 2008, 3664-8.		8
78	Temperature superposition for fast computation of 3D temperature distributions during optimization and planning of interstitial ultrasound hyperthermia treatments. International Journal of Hyperthermia, 2012, 28, 235-249.	2.5	8
79	A feasibility study on monitoring the evolution of apparent diffusion coefficient decrease during thermal ablation. Medical Physics, 2015, 42, 5130-5137.	3.0	8
80	Percutaneous computed tomography fluoroscopy–guided conformal ultrasonic ablation of vertebral tumors in a rabbit tumor model. Journal of Neurosurgery: Spine, 2010, 13, 733-779.	1.7	7
81	Deployable cylindrical phased-array applicator mimicking a concentric-ring configuration for minimally-invasive delivery of therapeutic ultrasound. Physics in Medicine and Biology, 2019, 64, 125001.	3.0	7
82	Endobronchial high-intensity ultrasound for thermal therapy of pulmonary malignancies: simulations with patient-specific lung models. International Journal of Hyperthermia, 2019, 36, 1107-1120.	2.5	7
83	Noninvasive, Targeted Creation of Neuromyelitis Optica Pathology in AQP4-IgG Seropositive Rats by Pulsed Focused Ultrasound. Journal of Neuropathology and Experimental Neurology, 2019, 78, 47-56.	1.7	7
84	Transurethral high-intensity ultrasound for treatment of stress urinary incontinence (SUI): simulation studies with patient-specific models. International Journal of Hyperthermia, 2018, 34, 1236-1247.	2.5	6
85	LIPUS far-field exposimetry system for uniform stimulation of tissues in-vitro: development and validation with bovine intervertebral disc cells. Biomedical Physics and Engineering Express, 2020, 6, 035033.	1.2	6
86	Intradiscal Thermal Therapy Using Interstitial Ultrasound. Spine, 2007, 32, 503-511.	2.0	5
87	Interstitial ultrasound ablation of tumors within or adjacent to bone: Contributions of preferential heating at the bone surface. Proceedings of SPIE, 2013, , .	0.8	5
88	Model predictive control for treating cancer with ultrasonic heating. , 2015, , .		5
89	Integration of deployable fluid lenses and reflectors with endoluminal therapeutic ultrasound applicators: Preliminary investigations of enhanced penetration depth and focal gain. Medical Physics, 2017, 44, 5339-5356.	3.0	5
90	Theoretical investigation of transgastric and intraductal approaches for ultrasound-based thermal therapy of the pancreas. Journal of Therapeutic Ultrasound, 2017, 5, 10.	2.2	5

CHRIS J DIEDERICH

#	Article	IF	CITATIONS
91	Interstitial ultrasound applicators with dynamic angular control for thermal ablation of tumors under MR-guidance. , 2004, 2004, 2496-9.		4
92	<title>Prostate thermal therapy with interstitial and transurethral ultrasound applicators: a feasibility study</title> . , 1998, , .		4
93	<title>Directional interstitial ultrasound applicators for thermal coagulation of tissue</title> . , 1998, , .		4
94	MRI-temperature mapping during ultrasound prostate ablation using fat for phase estimation. , 2004, 2004, 2500-2.		4
95	Ultrasound interstitial thermal therapy (USITT) for the treatment of uterine myomas. , 2007, 6440, 64400F.		4
96	MR guided thermal therapy of pancreatic tumors with endoluminal, intraluminal and interstitial catheter-based ultrasound devices: preliminary theoretical and experimental investigations. , 2013, 8584, 85840V.		4
97	<i>Ex-vivo</i> and simulation comparison of multi-angular ablation patterns using catheter-based ultrasound transducers. Proceedings of SPIE, 2013, , .	0.8	4
98	Hyperthermia in Locally Recurrent Breast Cancer. , 2016, , 145-158.		4
99	In silico feasibility assessment of extracorporeal delivery of low-intensity pulsed ultrasound to intervertebral discs within the lumbar spine. Physics in Medicine and Biology, 2020, 65, 215011.	3.0	4
100	Assessment of MR Thermometry During High Intensity Ultrasound Ablation of the Canine Prostate. AIP Conference Proceedings, 2006, , .	0.4	3
101	A Pilot Study of Catheter-Based Ultrasound Hyperthermia with HDR Brachytherapy for Treatment of Locally Advanced Cancer of the Prostate and Cervix. , 2011, , .		3
102	<i>In situ</i> treatment of liver using catheter based therapeutic ultrasound with combined imaging and GPS tracking. Proceedings of SPIE, 2013, , .	0.8	3
103	Microbubble-Facilitated Ultrasound Catheter Ablation Causes Microvascular Damage and Fibrosis. Ultrasound in Medicine and Biology, 2021, 47, 131-138.	1.5	3
104	Deployable ultrasound applicators for endoluminal delivery of volumetric hyperthermia. International Journal of Hyperthermia, 2021, 38, 1188-1204.	2.5	3
105	Sonication strategies toward volumetric ultrasound hyperthermia treatment using the ExAblate body MRgFUS system. International Journal of Hyperthermia, 2021, 38, 1590-1600.	2.5	3
106	<title>MR thermal monitoring of ultrasound interstitial thermal therapy</title> . , 1999, 3594, 178.		2
107	IDTT therapy in cadaveric lumbar spine: temperature and thermal dose distributions. , 2001, 4247, 104.		2
108	Biothermal modeling of transurethral ultrasound applicators for MR-guided prostate thermal		2

therapy (Invited Paper). , 2005, , .

#	Article	IF	CITATIONS
109	Ultrasound therapy applicators for controlled thermal modification of tissue. Proceedings of SPIE, 2011, , .	0.8	2
110	Targeted hyperthermia in prostate with an MR-guided endorectal ultrasound phased array: patient specific modeling and preliminary experiments. , 2013, , .		2
111	Assessing temperature changes in cortical bone using variable flip-angle ultrashort echo-time MRI. AIP Conference Proceedings, 2017, , .	0.4	2
112	High Contrast Ultrasonic Method With Multi-Spatiotemporal Compounding for Monitoring Catheter-Based Ultrasound Thermal Therapy: Development and Ex Vivo Evaluations. IEEE Transactions on Biomedical Engineering, 2021, 68, 3131-3141.	4.2	2
113	880 kHz ultrasound treatment for drug delivery to the vitreous humor. American Journal of Translational Research (discontinued), 2018, 10, 3162-3170.	0.0	2
114	Minimally invasive ultrasound thermal therapy with MR thermal monitoring and guidance. , 2001, , .		1
115	Referenceless MR thermometry during canine prostate ablation. AIP Conference Proceedings, 2006, , .	0.4	1
116	Dynamic Angular Control Of Thermal Therapy With Stationary Multi-Sectored Tubular Ultrasound Applicators Under MR Temperature Monitoring. AIP Conference Proceedings, 2006, , .	0.4	1
117	Prostate thermal therapy with catheter-based ultrasound devices and MR thermal monitoring. , 2007, , \cdot		1
118	Patient specific optimization-based treatment planning for catheter-based ultrasound hyperthermia and thermal ablation. , 2009, , .		1
119	Treatment delivery platform for conformal catheter-based ultrasound hyperthermia. Proceedings of SPIE, 2009, , .	0.8	1
120	Development of an endoluminal high-intensity ultrasound applicator for image-guided thermal therapy of pancreatic tumors. Proceedings of SPIE, 2015, 9326, .	0.8	1
121	Investigation of interstitial ultrasound ablation of spinal and paraspinal tumors: A patient-specific and parametric simulation study. AIP Conference Proceedings, 2017, , .	0.4	1
122	High-intensity interstitial ultrasound for thermal ablation of focal cancer targets in prostate. AIP Conference Proceedings, 2017, , .	0.4	1
123	Thermal dosimetry analysis combined with patient-specific thermal modeling of clinical interstitial ultrasound hyperthermia integrated within HDR brachytherapy for treatment of locally advanced prostate cancer. AIP Conference Proceedings, 2017, , .	0.4	1
124	Experimental investigations of an endoluminal ultrasound applicator for MR-guided thermal therapy of pancreatic cancer. AIP Conference Proceedings, 2017, , .	0.4	1
125	Model-based feasibility assessment and evaluation of prostate hyperthermia with a commercial MR-guided endorectal HIFU ablation array. AIP Conference Proceedings, 2017, , .	0.4	1
126	Dual-sectored transurethral ultrasound for thermal treatment of stress urinary incontinence: in silico studies in 3D anatomical models. Medical and Biological Engineering and Computing, 2020, 58, 1325-1340.	2.8	1

#	Article	IF	CITATIONS
127	Endoluminal ultrasound applicator configurations utilizing deployable arrays, reflectors and lenses to augment and dynamically adjust treatment volume, gain, and depth. Proceedings of SPIE, 2017, , .	0.8	1
128	An Endoscopic Concentric Ring Sector-Vortex Ultrasound Phased Array Applicator for Pancreatic Tumor Ablation. , 2021, , .		1
129	Technical note: Lowâ€cost MRâ€compatible pneumatic respiratory organ motion simulator for the development of MRâ€guided thermal therapy. Medical Physics, 2022, 49, 4365-4371.	3.0	1
130	ICDC interstitial ultrasound applicators for high-temperature thermal therapy. , 2001, , .		0
131	Evaluation of cadaveric lumbar spine temperature distributions during nucleoplasty. , 2003, , .		0
132	MR-guided conformal heating of canine prostate using interstitial applicators. , 2003, 4954, 220.		0
133	Theoretical and experimental design of site-specific applicators and heating protocols for interstitial ultrasound thermal therapy. , 2003, 4954, 159.		0
134	Sectored interstitial ultrasound applicators for angular control of MR-guided thermal therapy (Invited Paper). , 2005, , .		0
135	Effects of thermal therapy on intervertebral discs: investigations using a miniaturized RF heating probe in a small animal model (Invited Paper). , 2005, , .		0
136	Extradiscal ultrasound thermal therapy (ExDUSTT): evaluation in ex vivo and in vivo spine models (Invited Paper). , 2005, , .		0
137	Catheter-Based Ultrasound Applicators for Selective Prostate Ablation With MR-Guidance. AIP Conference Proceedings, 2005, , .	0.4	0
138	Targeted Prostate Thermal Therapy with Catheter-Based Ultrasound Devices and MR Thermal Monitoring. AIP Conference Proceedings, 2006, , .	0.4	0
139	Society of Thermal Medicine Robinson Award 2007. International Journal of Hyperthermia, 2007, 23, 473-474.	2.5	0
140	Referenceless PRF thermometry with multi-echo processing to monitor prostate ablation. AIP Conference Proceedings, 2007, , .	0.4	0
141	Fast Conformal Thermal Ablation in the Prostate with Transurethral Multi-Sectored Ultrasound Devices and MR Guidance. AIP Conference Proceedings, 2007, , .	0.4	0
142	Catheter-Based Ultrasound for 3D Control of Thermal Therapy. , 2009, , .		0
143	Endocavitary Ultrasound Applicator for Hyperthermia Treatment of Cervical Cancer. , 2009, ,		0
144	An intrauterine ultrasound applicator for targeted delivery of thermal therapy in conjunction with HDR brachytherapy to the cervix. , 2009, , .		0

CHRIS J DIEDERICH

#	Article	IF	CITATIONS
145	Ultrasound Strain Imaging Towards Verification and Guidance of Prostate Thermal Therapy with Catheter-Based Ultrasound Applicators. , 2010, , .		0
146	Development of a 3D patient-specific planning platform for interstitial and transurethral ultrasound thermal therapy. , 2010, , .		0
147	Endocavity Ultrasound Hyperthermia for Locally Advanced Cervical Cancer: Patient-specific Modeling, Experimental Verification, and Combination with HDR Brachytherapy. , 2010, , .		0
148	Hepatic ablation with multiple interstitial ultrasound applicators: initial ex vivo and computational studies. Proceedings of SPIE, 2011, , .	0.8	0
149	Fast optimization and planning of clinical interstitial ultrasound hyperthermia using superposition and surrogate models of temperature distributions. Proceedings of SPIE, 2011, , .	0.8	0
150	Conformal needle-based ultrasound ablation using EM-tracked conebeam CT image guidance. , 2011, , .		0
151	Evaluation of high intensity focused ultrasound ablation of prostate tumor with hyperpolarized 13C imaging biomarkers. Proceedings of SPIE, 2015, , .	0.8	0
152	Catheter-based high-intensity ultrasound for epicardial ablation of the left ventricle: device design and <i>in vivo</i> feasiblity. Proceedings of SPIE, 2015, , .	0.8	0
153	Development of a fast 3D treatment planning platform for clinical interstitial microwave hyperthermia within free-hand obliquely implanted HDR catheters. , 2015, , .		0
154	Low Intensity Pulsed Ultrasound (LIPUS) for the treatment of intervertebral disc degeneration. Proceedings of SPIE, 2017, 10066, .	0.8	0
155	Theoretical design and evaluation of endoluminal ultrasound applicators for thermal therapy of pancreatic cancer under image guidance. AIP Conference Proceedings, 2017, , .	0.4	0
156	Prostate thermal therapy: technologies and treatment strategies. Proceedings of SPIE, 2000, , .	0.8	0
157	Magnetic-resonance-guided directional transurethral ultrasound thermal therapy. , 2003, , .		0
158	Improved accuracy of ultrasound-guided therapies using electromagnetic tracking: in-vivo speed of sound measurements. Proceedings of SPIE, 2017, , .	0.8	0
159	Ultrasonic CBE monitoring approach with high contrast for thermal therapy using percutaneous catheter-based ultrasound applicators. , 2020, , .		0