
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5869821/publications.pdf Version: 2024-02-01

YUNNE-IAI SHIN

#	Article	IF	CITATIONS
1	Using species distribution models only may underestimate climate change impacts on future marine biodiversity. Ecological Modelling, 2022, 464, 109826.	2.5	19
2	Actions to halt biodiversity loss generally benefit the climate. Global Change Biology, 2022, 28, 2846-2874.	9.5	51
3	Can We Avoid Tacit Trade-Offs between Flexibility and Efficiency in Systematic Conservation Planning? The Mediterranean Sea as a Case Study. Diversity, 2022, 14, 9.	1.7	0
4	Identifying uncertainties in scenarios and models of socio-ecological systems in support of decision-making. One Earth, 2021, 4, 967-985.	6.8	29
5	Contrasted patterns in climate change risk for Mediterranean fisheries. Global Change Biology, 2021, 27, 5920-5933.	9.5	10
6	Making spatial-temporal marine ecosystem modelling better – A perspective. Environmental Modelling and Software, 2021, 145, 105209.	4.5	26
7	Next-generation ensemble projections reveal higher climate risks for marine ecosystems. Nature Climate Change, 2021, 11, 973-981.	18.8	96
8	Responses of ecological indicators to fishing pressure under environmental change: exploring non-linearity and thresholds. ICES Journal of Marine Science, 2020, 77, 1516-1531.	2.5	19
9	Incorporating environmental forcing in developing ecosystem-based fisheries management strategies. ICES Journal of Marine Science, 2020, 77, 500-514.	2.5	7
10	The Cumulative Effects of Fishing, Plankton Productivity, and Marine Mammal Consumption in a Marine Ecosystem. Frontiers in Marine Science, 2020, 7, .	2.5	7
11	Set ambitious goals for biodiversity and sustainability. Science, 2020, 370, 411-413.	12.6	225
12	The Ocean Decade: A True Ecosystem Modeling Challenge. Frontiers in Marine Science, 2020, 7, .	2.5	46
13	Post-2020 biodiversity targets need to embrace climate change. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30882-30891.	7.1	160
14	Evaluating impacts of pulse fishing on the effectiveness of seasonal closure. Acta Oceanologica Sinica, 2020, 39, 89-99.	1.0	7
15	Investments' role in ecosystem degradation—Response. Science, 2020, 368, 377-377.	12.6	5
16	A Response to Scientific and Societal Needs for Marine Biological Observations. Frontiers in Marine Science, 2019, 6, .	2.5	26
17	An End-to-End Model Reveals Losers and Winners in a Warming Mediterranean Sea. Frontiers in Marine Science, 2019, 6, .	2.5	66
18	Ecosystem-based reference points under varying plankton productivity states and fisheries management strategies. ICES Journal of Marine Science, 2019, 76, 2045-2059.	2.5	14

#	Article	IF	CITATIONS
19	Exploring the usefulness of scenario archetypes in science-policy processes: experience across IPBES assessments. Ecology and Society, 2019, 24, .	2.3	32
20	Capturing the big picture of Mediterranean marine biodiversity with an end-to-end model of climate and fishing impacts. Progress in Oceanography, 2019, 178, 102179.	3.2	28
21	Reference levels of ecosystem indicators at multispecies maximum sustainable yield. ICES Journal of Marine Science, 2019, 76, 2070-2081.	2.5	11
22	Implementation of an end-to-end model of the Gulf of Lions ecosystem (NW Mediterranean Sea). II. Investigating the effects of high trophic levels on nutrients and plankton dynamics and associated feedbacks. Ecological Modelling, 2019, 405, 51-68.	2.5	5
23	Making ecological indicators management ready: Assessing the specificity, sensitivity, and threshold response of ecological indicators. Ecological Indicators, 2019, 105, 16-28.	6.3	41
24	Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12907-12912.	7.1	357
25	Implementation of an end-to-end model of the Gulf of Lions ecosystem (NW Mediterranean Sea). I. Parameterization, calibration and evaluation. Ecological Modelling, 2019, 401, 1-19.	2.5	13
26	Building bridges between global information systems on marine organisms and ecosystem models. Ecological Modelling, 2019, 398, 1-19.	2.5	2
27	Pervasive human-driven decline of life on Earth points to the need for transformative change. Science, 2019, 366, .	12.6	1,213
28	An end-to-end model to evaluate the sensitivity of ecosystem indicators to track fishing impacts. Ecological Indicators, 2019, 98, 121-130.	6.3	13
29	The specificity of marine ecological indicators to fishing in the face of environmental change: A multi-model evaluation. Ecological Indicators, 2018, 89, 317-326.	6.3	58
30	Essential ocean variables for global sustained observations of biodiversity and ecosystem changes. Global Change Biology, 2018, 24, 2416-2433.	9.5	272
31	Risky business: The combined effects of fishing and changes in primary productivity on fish communities. Ecological Modelling, 2018, 368, 265-276.	2.5	67
32	Linking Capacity Development to GOOS Monitoring Networks to Achieve Sustained Ocean Observation. Frontiers in Marine Science, 2018, 5, .	2.5	49
33	A protocol for the intercomparison of marine fishery and ecosystem models: Fish-MIP v1.0. Geoscientific Model Development, 2018, 11, 1421-1442.	3.6	116
34	Evaluating the specificity of ecosystem indicators to fishing in a changing environment: A model comparison study for the southern Benguela ecosystem. Ecological Indicators, 2018, 95, 85-98.	6.3	13
35	A sequential approach to calibrate ecosystem models with multiple time series data. Progress in Oceanography, 2017, 151, 227-244.	3.2	24
36	Spatial and temporal dynamics of predator-prey species interactions off western Canada. ICES Journal of Marine Science, 2017, 74, 2107-2119.	2.5	29

#	Article	IF	CITATIONS
37	An individual-based model for simulating the ecosystem dynamics of Jiaozhou Bay, China. Ecological Modelling, 2017, 360, 120-131.	2.5	14
38	Ecosystem indicators—accounting for variability in species' trophic levels. ICES Journal of Marine Science, 2017, 74, 158-169.	2.5	41
39	Strong fisheries management and governance positively impact ecosystem status. Fish and Fisheries, 2017, 18, 412-439.	5.3	54
40	Modelling food web structure using an end-to-end approach in the coastal ecosystem of the Gulf of Gabes (Tunisia). Ecological Modelling, 2016, 339, 45-57.	2.5	32
41	Management strategy evaluation using the individual-based, multispecies modeling approach OSMOSE. Ecological Modelling, 2016, 340, 86-105.	2.5	56
42	Estimating natural mortality rates and simulating fishing scenarios for Gulf of Mexico red grouper (Epinephelus morio) using the ecosystem model OSMOSE-WFS. Journal of Marine Systems, 2016, 154, 264-279.	2.1	51
43	Ecological indicators to capture the effects of fishing on biodiversity and conservation status of marine ecosystems. Ecological Indicators, 2016, 60, 947-962.	6.3	120
44	Evaluating changes in marine communities that provide ecosystem services through comparative assessments of community indicators. Ecosystem Services, 2015, 16, 413-429.	5.4	22
45	Relationships among fisheries exploitation, environmental conditions, and ecological indicators across a series of marine ecosystems. Journal of Marine Systems, 2015, 148, 101-111.	2.1	42
46	Evaluation of the trophic structure of the West Florida Shelf in the 2000s using the ecosystem model OSMOSE. Journal of Marine Systems, 2015, 144, 30-47.	2.1	37
47	Combined Fishing and Climate Forcing in the Southern Benguela Upwelling Ecosystem: An End-to-End Modelling Approach Reveals Dampened Effects. PLoS ONE, 2014, 9, e94286.	2.5	68
48	An ecosystem modelling framework for incorporating climate regime shifts into fisheries management. Progress in Oceanography, 2013, 115, 53-64.	3.2	31
49	Global assessments of the status of marine exploited ecosystems and their management: what more is needed?. Current Opinion in Environmental Sustainability, 2012, 4, 292-299.	6.3	24
50	Global in scope and regionally rich: an IndiSeas workshop helps shape the future of marine ecosystem indicators. Reviews in Fish Biology and Fisheries, 2012, 22, 835-845.	4.9	55
51	Impacts of Fishing Low–Trophic Level Species on Marine Ecosystems. Science, 2011, 333, 1147-1150.	12.6	481
52	Coupling low and high trophic levels models: Towards a pathways-orientated approach for end-to-end models. Progress in Oceanography, 2010, 84, 105-112.	3.2	57
53	Comparing data-based indicators across upwelling and comparable systems for communicating ecosystem states and trends. ICES Journal of Marine Science, 2010, 67, 807-832.	2.5	50
54	Can simple be useful and reliable? Using ecological indicators to represent and compare the states of marine ecosystems. ICES Journal of Marine Science, 2010, 67, 717-731.	2.5	100

#	Article	IF	CITATIONS
55	Using indicators for evaluating, comparing, and communicating the ecological status of exploited marine ecosystems. 1. The IndiSeas project. ICES Journal of Marine Science, 2010, 67, 686-691.	2.5	103
56	Using indicators for evaluating, comparing, and communicating the ecological status of exploited marine ecosystems. 2. Setting the scene. ICES Journal of Marine Science, 2010, 67, 692-716.	2.5	156
57	The good(ish), the bad, and the ugly: a tripartite classification of ecosystem trends. ICES Journal of Marine Science, 2010, 67, 745-768.	2.5	58
58	Relating marine ecosystem indicators to fishing and environmental drivers: an elucidation of contrasting responses. ICES Journal of Marine Science, 2010, 67, 787-795.	2.5	107
59	Ranking the ecological relative status of exploited marine ecosystems. ICES Journal of Marine Science, 2010, 67, 769-786.	2.5	60
60	Application of an evolutionary algorithm to the inverse parameter estimation of an individual-based model. Ecological Modelling, 2010, 221, 840-849.	2.5	36
61	Endâ€Toâ€End Models for the Analysis of Marine Ecosystems: Challenges, Issues, and Next Steps. Marine and Coastal Fisheries, 2010, 2, 115-130.	1.4	202
62	Trend analysis of indicators: a comparison of recent changes in the status of marine ecosystems around the world. ICES Journal of Marine Science, 2010, 67, 732-744.	2.5	102
63	Exploring the effect of Marine Protected Areas on the dynamics of fish communities in the southern Benguela: an individual-based modelling approach. ICES Journal of Marine Science, 2009, 66, 378-387.	2.5	31
64	Trophic structure of the Peruvian marine ecosystem in 2000–2006: Insights on the effects of management scenarios for the hake fishery using the IBM trophic model Osmose. Journal of Marine Systems, 2009, 75, 290-304.	2.1	39
65	Ecosystem oceanography for global change in fisheries. Trends in Ecology and Evolution, 2008, 23, 338-346.	8.7	259
66	Cultivation, Allee effect and resilience of large demersal fish populations. Aquatic Living Resources, 2008, 21, 287-295.	1.2	15
67	Modeling environmental effects on the size-structured energy flow through marine ecosystems. Part 2: Simulations. Progress in Oceanography, 2007, 74, 500-514.	3.2	46
68	Modeling environmental effects on the size-structured energy flow through marine ecosystems. Part 1: The model. Progress in Oceanography, 2007, 74, 479-499.	3.2	103
69	Towards end-to-end models for investigating the effects of climate and fishing in marine ecosystems. Progress in Oceanography, 2007, 75, 751-770.	3.2	184
70	Simulating and testing the sensitivity of ecosystem-based indicators to fishing in the southern Benguela ecosystem. Canadian Journal of Fisheries and Aquatic Sciences, 2006, 63, 943-956.	1.4	53
71	Using size-based indicators to evaluate the ecosystem effects of fishing. ICES Journal of Marine Science, 2005, 62, 384-396.	2.5	423
72	Using an individual-based model of fish assemblages to study the response of size spectra to changes in fishing. Canadian Journal of Fisheries and Aquatic Sciences, 2004, 61, 414-431.	1.4	225

#	Article	IF	CITATIONS
73	A mathematical derivation of size spectra in fish populations. Comptes Rendus - Biologies, 2004, 327, 245-254.	0.2	12

Interactions trophiques fondÃf©es sur la taille et dynamiques des communautÃf©s de poissons marins
exploration Ãf l'aide d'un modÃfÂ⁻le spatial individus-centrÃf©.. Aquatic Living Resources, 2001, 14, 65-80.