
Yingbo Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5869668/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Prevalence and risk factors of mcr-1-positive volunteers after colistin banning as animal growth promoter in China: a community-based case–control study. Clinical Microbiology and Infection, 2022, 28, 267-272.	6.0	11
2	Distinct increase in antimicrobial resistance genes among Escherichia coli during 50 years of antimicrobial use in livestock production in China. Nature Food, 2022, 3, 197-205.	14.0	34
3	Clonal and Horizontal Transmission of <i>bla</i> _{NDM} among Klebsiella pneumoniae in Children's Intensive Care Units. Microbiology Spectrum, 2022, 10, .	3.0	12
4	Mobile Colistin Resistance Enzyme MCRâ€3 Facilitates Bacterial Evasion of Host Phagocytosis. Advanced Science, 2021, 8, e2101336.	11.2	11
5	In vitro Activity of Contezolid Against Methicillin-Resistant Staphylococcus aureus, Vancomycin-Resistant Enterococcus, and Strains With Linezolid Resistance Genes From China. Frontiers in Microbiology, 2021, 12, 729900.	3.5	11
6	Impact of carbapenem resistance on mortality in patients infected with <i>Enterobacteriaceae</i> : a systematic review and meta-analysis. BMJ Open, 2021, 11, e054971.	1.9	25
7	Co-existence of two novel phosphoethanolamine transferase gene variants in AeromonasÂjandaei from retail fish. International Journal of Antimicrobial Agents, 2020, 55, 105856.	2.5	11
8	Metagenomic insights into differences in environmental resistome profiles between integrated and monoculture aquaculture farms in China. Environment International, 2020, 144, 106005.	10.0	40
9	Use of polymyxins in Chinese hospitals. Lancet Infectious Diseases, The, 2020, 20, 1125-1126.	9.1	8
10	Changes in colistin resistance and mcr-1 abundance in Escherichia coli of animal and human origins following the ban of colistin-positive additives in China: an epidemiological comparative study. Lancet Infectious Diseases, The, 2020, 20, 1161-1171.	9.1	212
11	Fitness Cost of blaNDM-5-Carrying p3R-IncX3 Plasmids in Wild-Type NDM-Free Enterobacteriaceae. Microorganisms, 2020, 8, 377.	3.6	40
12	Farm animals and aquaculture: significant reservoirs of mobile colistin resistance genes. Environmental Microbiology, 2020, 22, 2469-2484.	3.8	68
13	Emergence of plasmid-mediated high-level tigecycline resistance genes in animals and humans. Nature Microbiology, 2019, 4, 1450-1456.	13.3	455
14	Integrated aquaculture contributes to the transfer of mcr-1 between animals and humans via the aquaculture supply chain. Environment International, 2019, 130, 104708.	10.0	53
15	Rapid Increase in Prevalence of Carbapenem-Resistant Enterobacteriaceae (CRE) and Emergence of Colistin Resistance Gene <i>mcr-1</i> in CRE in a Hospital in Henan, China. Journal of Clinical Microbiology, 2018, 56, .	3.9	55
16	Emerging Carriage of NDM-5 and MCR-1 in Escherichia coli From Healthy People in Multiple Regions in China: A Cross Sectional Observational Study. EClinicalMedicine, 2018, 6, 11-20.	7.1	65
17	Reply to Cabello et al., "Aquaculture and <i>mcr</i> Colistin Resistance Determinantsâ€: MBio, 2018, 9, .	4.1	12
18	Prevalence and Genetic Analysis of <i>mcr-3</i> -Positive Aeromonas Species from Humans, Retail Meat, and Environmental Water Samples. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	58

YINGBO SHEN

#	Article	IF	CITATIONS
19	In Vitro/Vivo Activity of Potential MCR-1 Inhibitor in Combination With Colistin Againsts mcr-1-Positive Klebsiella pneumonia. Frontiers in Microbiology, 2018, 9, 1615.	3.5	23
20	Heterogeneous and Flexible Transmission of <i>mcr-1</i> in Hospital-Associated Escherichia coli. MBio, 2018, 9, .	4.1	54
21	Anthropogenic and environmental factors associated with high incidence of mcr-1 carriage in humans across China. Nature Microbiology, 2018, 3, 1054-1062.	13.3	139
22	Molecular Insights into Functional Differences between <i>mcr-3</i> - and <i>mcr-1</i> -Mediated Colistin Resistance. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	14
23	OUP accepted manuscript. Journal of Antimicrobial Chemotherapy, 2018, 73, 1786-1790.	3.0	10
24	Prevalence, risk factors, outcomes, and molecular epidemiology of mcr-1 -positive Enterobacteriaceae in patients and healthy adults from China: an epidemiological and clinical study. Lancet Infectious Diseases, The, 2017, 17, 390-399.	9.1	298
25	Genetic and Functional Characterization of <i>bla</i> _{CTX-M-199} , a Novel Tazobactam and Sulbactam Resistance-Encoding Gene Located in a Conjugative <i>mcr-1</i> -Bearing Incl2 Plasmid. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	18
26	Balancing mcr-1 expression and bacterial survival is a delicate equilibrium between essential cellular defence mechanisms. Nature Communications, 2017, 8, 2054.	12.8	157
27	Novel Plasmid-Mediated Colistin Resistance Gene <i>mcr-3</i> in <i>Escherichia coli</i> . MBio, 2017, 8, .	4.1	388
28	Early emergence of mcr-1 in Escherichia coli from food-producing animals. Lancet Infectious Diseases, The, 2016, 16, 293.	9.1	230
29	High detection rate of the oxazolidinone resistance gene optrA in Enterococcus faecalis isolated from a Chinese anorectal surgery ward. International Journal of Antimicrobial Agents, 2016, 48, 757-759.	2.5	23
30	Genetic environment of the transferable oxazolidinone/phenicol resistance gene <i>optrA</i> in <i>Enterococcus faecalis</i> isolates of human and animal origin. Journal of Antimicrobial Chemotherapy, 2016, 71, 1466-1473.	3.0	134
31	A novel gene, <i>optrA</i> , that confers transferable resistance to oxazolidinones and phenicols and its presence in <i>Enterococcus faecalis</i> and <i>Enterococcus faecium</i> of human and animal origin. Journal of Antimicrobial Chemotherapy, 2015, 70, 2182-2190.	3.0	450