H K Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5869577/publications.pdf

Version: 2024-02-01

			3	38742	5	1608	
173		,969		50		86	
papers	cit	ations		h-index		g-index	
175		175		175		5286	
175		1/3		173		3200	
all docs	docs	citations		times ranked		citing authors	

#	Article	IF	Citations
1	Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature. Construction and Building Materials, 2013, 47, 1201-1209.	7.2	493
2	Shrinkage characteristics of alkali-activated fly ash/slag paste and mortar at early ages. Cement and Concrete Composites, 2014, 53, 239-248.	10.7	309
3	Enhanced effect of carbon nanotube on mechanical and electrical properties of cement composites by incorporation of silica fume. Composite Structures, 2014, 107, 60-69.	5.8	280
4	Fresh and hardened properties of alkali-activated fly ash/slag pastes with superplasticizers. Construction and Building Materials, 2014, 50, 169-176.	7.2	243
5	Workability, and mechanical, acoustic and thermal properties of lightweight aggregate concrete with a high volume of entrained air. Construction and Building Materials, 2012, 29, 193-200.	7.2	235
6	Microstructural densification and CO2 uptake promoted by the carbonation curing of belite-rich Portland cement. Cement and Concrete Research, 2016, 82, 50-57.	11.0	220
7	Review on recent advances in CO2 utilization and sequestration technologies in cement-based materials. Construction and Building Materials, 2016, 127, 762-773.	7.2	209
8	Autogenous shrinkage of concrete containing granulated blast-furnace slag. Cement and Concrete Research, 2006, 36, 1279-1285.	11.0	206
9	Use of power plant bottom ash as fine and coarse aggregates in high-strength concrete. Construction and Building Materials, 2011, 25, 1115-1122.	7.2	204
10	Reactivity and reaction products of alkali-activated, fly ash/slag paste. Construction and Building Materials, 2015, 81, 303-312.	7.2	192
11	Improved piezoresistive sensitivity and stability of CNT/cement mortar composites with low water–binder ratio. Composite Structures, 2014, 116, 713-719.	5 . 8	178
12	Influence of the slag content on the chloride and sulfuric acid resistances of alkali-activated fly ash/slag paste. Cement and Concrete Composites, 2016, 72, 168-179.	10.7	176
13	Physicochemical properties of binder gel in alkali-activated fly ash/slag exposed to high temperatures. Cement and Concrete Research, 2016, 89, 72-79.	11.0	155
14	Monitoring the strength development in concrete by EMI sensing technique. Construction and Building Materials, 2010, 24, 1746-1753.	7.2	144
15	Electromagnetic interference shielding/absorbing characteristics of CNT-embedded epoxy composites. Composites Part A: Applied Science and Manufacturing, 2011, 42, 1110-1118.	7.6	128
16	Microbially mediated calcium carbonate precipitation on normal and lightweight concrete. Construction and Building Materials, 2013, 38, 1073-1082.	7.2	120
17	Influence of cement flow and aggregate type on the mechanical and acoustic characteristics of porous concrete. Applied Acoustics, 2010, 71, 607-615.	3.3	119
18	Heating and heat-dependent mechanical characteristics of CNT-embedded cementitious composites. Composite Structures, 2016, 136, 162-170.	5.8	110

#	Article	IF	CITATIONS
19	Influence of silica fume additions on electromagnetic interference shielding effectiveness of multi-walled carbon nanotube/cement composites. Construction and Building Materials, 2012, 30, 480-487.	7.2	109
20	Synthesis of mesoporous geopolymers containing zeolite phases by a hydrothermal treatment. Microporous and Mesoporous Materials, 2016, 229, 22-30.	4.4	105
21	Electromagnetic interference shielding characteristics and shielding effectiveness of polyaniline-coated films. Thin Solid Films, 2011, 519, 3492-3496.	1.8	103
22	A micromechanical damage model for effective elastoplastic behavior of partially debonded ductile matrix composites. International Journal of Solids and Structures, 2001, 38, 6307-6332.	2.7	98
23	Influences of CNT dispersion and pore characteristics on the electrical performance of cementitious composites. Composite Structures, 2017, 164, 32-42.	5.8	96
24	Carbon nanotube (CNT) incorporated cementitious composites for functional construction materials: The state of the art. Composite Structures, 2019, 227, 111244.	5.8	95
25	Synthesis of geopolymer-supported zeolites via robust one-step method and their adsorption potential. Journal of Hazardous Materials, 2018, 353, 522-533.	12.4	90
26	Piezoelectric-based non-destructive monitoring of hydration of reinforced concrete as an indicator of bond development at the steel–concrete interface. Cement and Concrete Research, 2010, 40, 1697-1703.	11.0	88
27	Intrinsic electromagnetic radiation shielding/absorbing characteristics of polyaniline-coated transparent thin films. Synthetic Metals, 2010, 160, 1838-1842.	3.9	84
28	Coal bottom ash in field of civil engineering: A review of advanced applications and environmental considerations. KSCE Journal of Civil Engineering, 2015, 19, 1802-1818.	1.9	83
29	Effect of fly ash characteristics on delayed high-strength development of geopolymers. Construction and Building Materials, 2016, 102, 260-269.	7.2	82
30	Adsorption characteristics of cesium onto mesoporous geopolymers containing nano-crystalline zeolites. Microporous and Mesoporous Materials, 2017, 242, 238-244.	4.4	81
31	A micromechanical damage model for effective elastoplastic behavior of ductile matrix composites considering evolutionary complete particle debonding. Computer Methods in Applied Mechanics and Engineering, 2000, 183, 201-222.	6.6	79
32	Electrical characteristics of hierarchical conductive pathways in cementitious composites incorporating CNT and carbon fiber. Cement and Concrete Composites, 2017, 82, 165-175.	10.7	77
33	Flow, water absorption, and mechanical characteristics of normal- and high-strength mortar incorporating fine bottom ash aggregates. Construction and Building Materials, 2012, 26, 249-256.	7.2	75
34	Mechanical properties and setting characteristics of geopolymer mortar using styrene-butadiene (SB) latex. Construction and Building Materials, 2016, 113, 264-272.	7.2	74
35	Utilization of power plant bottom ash as aggregates in fiber-reinforced cellular concrete. Waste Management, 2010, 30, 274-284.	7.4	73
36	Alkali-activated, cementless, controlled low-strength materials (CLSM) utilizing industrial by-products. Construction and Building Materials, 2013, 49, 738-746.	7.2	73

#	Article	IF	Citations
37	Water purification characteristics of pervious concrete fabricated with CSA cement and bottom ash aggregates. Construction and Building Materials, 2017, 136, 1-8.	7.2	70
38	A novel eco-friendly porous concrete fabricated with coal ash and geopolymeric binder: Heavy metal leaching characteristics and compressive strength. Construction and Building Materials, 2015, 79, 173-181.	7.2	69
39	Mechanical properties of lightweight concrete made with coal ashes after exposure to elevated temperatures. Cement and Concrete Composites, 2016, 72, 27-38.	10.7	67
40	Flexural stress and crack sensing capabilities of MWNT/cement composites. Composite Structures, 2017, 175, 86-100.	5.8	67
41	Behavior and performance of RC T-section deep beams externally strengthened in shear with CFRP sheets. Composite Structures, 2011, 93, 911-922.	5.8	66
42	Unlocking the role of MgO in the carbonation of alkali-activated slag cement. Inorganic Chemistry Frontiers, 2018, 5, 1661-1670.	6.0	66
43	Physical barrier effect of geopolymeric waste form on diffusivity of cesium and strontium. Journal of Hazardous Materials, 2016, 318, 339-346.	12.4	61
44	Effect of nano-silica on hydration and conversion of calcium aluminate cement. Construction and Building Materials, 2018, 169, 819-825.	7.2	59
45	A damage constitutive model of progressive debonding in aligned discontinuous fiber composites. International Journal of Solids and Structures, 2001, 38, 875-895.	2.7	57
46	Improved chloride resistance of high-strength concrete amended with coal bottom ash for internal curing. Construction and Building Materials, 2014, 71, 334-343.	7.2	57
47	Silica aerogel derived from rice husk: an aggregate replacer for lightweight and thermally insulating cement-based composites. Construction and Building Materials, 2019, 195, 312-322.	7.2	57
48	The electrically conductive carbon nanotube (CNT)/cement composites for accelerated curing and thermal cracking reduction. Composite Structures, 2016, 158, 20-29.	5.8	53
49	Micromechanics-based elastic damage modeling of particulate composites with weakened interfaces. International Journal of Solids and Structures, 2007, 44, 8390-8406.	2.7	52
50	Resistance of coal bottom ash mortar against the coupled deterioration of carbonation and chloride penetration. Materials and Design, 2016, 93, 160-167.	7.0	52
51	Resonant frequency range utilized electro-mechanical impedance method for damage detection performance enhancement on composite structures. Composite Structures, 2012, 94, 2383-2389.	5.8	51
52	Hydration kinetics of high-strength concrete with untreated coal bottom ash for internal curing. Cement and Concrete Composites, 2018, 91, 67-75.	10.7	51
53	Synergistic effect of MWNT/fly ash incorporation on the EMI shielding/absorbing characteristics of cementitious materials. Construction and Building Materials, 2016, 115, 651-661.	7.2	50
54	Evolution of the binder gel in carbonation-cured Portland cement in an acidic medium. Cement and Concrete Research, 2018, 109, 81-89.	11.0	49

#	Article	IF	Citations
55	Effect of superplasticizer type and siliceous materials on the dispersion of carbon nanotube in cementitious composites. Composite Structures, 2018, 185, 264-272.	5.8	49
56	Stable conversion of metastable hydrates in calcium aluminate cement by early carbonation curing. Journal of CO2 Utilization, 2017, 21, 224-226.	6.8	47
57	Internal-curing efficiency of cold-bonded coal bottom ash aggregate for high-strength mortar. Construction and Building Materials, 2016, 126, 1-8.	7.2	46
58	Synergistic effects of carbon nanotubes and carbon fibers on heat generation and electrical characteristics of cementitious composites. Carbon, 2018, 134, 283-292.	10.3	46
59	Autogenous shrinkage and electrical characteristics of cement pastes and mortars with carbon nanotube and carbon fiber. Construction and Building Materials, 2018, 177, 428-435.	7.2	46
60	Modeling of progressive damage in aligned and randomly oriented discontinuous fiber polymer matrix composites. Composites Part B: Engineering, 2000, 31, 77-86.	12.0	45
61	Carbonation of calcium sulfoaluminate cement blended with blast furnace slag. Cement and Concrete Composites, 2021, 118, 103918.	10.7	45
62	Heavy Metal Leaching, CO2 Uptake and Mechanical Characteristics of Carbonated Porous Concrete with Alkali-Activated Slag and Bottom Ash. International Journal of Concrete Structures and Materials, 2015, 9, 283-294.	3.2	44
63	Hydration of calcium sulfoaluminate cement blended with blast-furnace slag. Construction and Building Materials, 2021, 268, 121214.	7.2	44
64	Percolation threshold and piezoresistive response of multi-wall carbon nanotube/cement composites. Smart Structures and Systems, 2016, 18, 217-231.	1.9	44
65	Fabrication and design of electromagnetic wave absorber composed of carbon nanotube-incorporated cement composites. Composite Structures, 2018, 206, 439-447.	5.8	42
66	Influence of carbon fiber additions on the electromagnetic wave shielding characteristics of CNT-cement composites. Construction and Building Materials, 2021, 269, 121238.	7.2	42
67	Structural repair and strengthening of damaged RC beams with sprayed FRP. Composite Structures, 2004, 63, 201-209.	5.8	40
68	Electrical properties and piezoresistive evaluation of polyurethane-based composites with carbon nano-materials. Composites Science and Technology, 2015, 121, 41-48.	7.8	39
69	Circulating fluidized bed combustion ash as controlled low-strength material (CLSM) by alkaline activation. Construction and Building Materials, 2017, 156, 728-738.	7.2	39
70	Recent advances in microbial viability and self-healing performance in bacterial-based cementitious materials: A review. Construction and Building Materials, 2021, 274, 122094.	7.2	39
71	Predictions of viscoelastic strain rate dependent behavior of fiber-reinforced polymeric composites. Composite Structures, 2012, 94, 1420-1429.	5.8	38
72	Steel wire electromechanical impedance method using a piezoelectric material for composite structures with complex surfaces. Composite Structures, 2013, 98, 79-84.	5.8	38

#	Article	IF	Citations
73	Characterization of cement-based materials using a reusable piezoelectric impedance-based sensor. Smart Materials and Structures, 2011, 20, 085023.	3.5	37
74	Impacts of metakaolin on lightweight concrete by type of fine aggregate. Construction and Building Materials, 2012, 36, 719-726.	7.2	37
75	Mechanical properties and piezoresistive sensing capabilities of FRP composites incorporating CNT fibers. Composite Structures, 2017, 178, 1-8.	5.8	37
76	Effect of carbonyl iron powder incorporation on the piezoresistive sensing characteristics of CNT-based polymeric sensor. Composite Structures, 2020, 244, 112260.	5.8	37
77	Multi-level modeling of effective elastic behavior and progressive weakened interface in particulate composites. Composites Science and Technology, 2008, 68, 387-397.	7.8	36
78	A computational approach to the investigation of impact damage evolution in discontinuously reinforced fiber composites. Computational Mechanics, 2001, 27, 504-512.	4.0	35
79	A technique for improving the damage detection ability of the electro-mechanical impedance method on concrete structures. Smart Materials and Structures, 2012, 21, 085024.	3.5	34
80	A Three-dimensional Stress Analysis of a Penny-shaped Crack Interacting with a Spherical Inclusion. International Journal of Damage Mechanics, 2007, 16, 331-359.	4.2	33
81	Effects of High Volumes of Fly Ash, Blast Furnace Slag, and Bottom Ash on Flow Characteristics, Density, and Compressive Strength of High-Strength Mortar. Journal of Materials in Civil Engineering, 2013, 25, 662-665.	2.9	33
82	The influence of sodium hydrogen carbonate on the hydration of cement. Construction and Building Materials, 2015, 94, 746-749.	7.2	33
83	Multi-level homogenization for the prediction of the mechanical properties of ultra-high-performance concrete. Construction and Building Materials, 2019, 229, 116797.	7.2	33
84	Thermal behavior of alkali-activated fly ash/slag with the addition of an aerogel as an aggregate replacement. Cement and Concrete Composites, 2020, 106, 103462.	10.7	33
85	Effect of MgO on chloride penetration resistance of alkali-activated binder. Construction and Building Materials, 2018, 178, 584-592.	7.2	32
86	Micromechanics-based constitutive modeling for unidirectional laminated composites. International Journal of Solids and Structures, 2006, 43, 5674-5689.	2.7	31
87	Effect of CaSO4 on hydration and phase conversion of calcium aluminate cement. Construction and Building Materials, 2019, 224, 40-47.	7.2	31
88	An elastoplastic damage model for metal matrix composites considering progressive imperfect interface under transverse loading. International Journal of Plasticity, 2010, 26, 25-41.	8.8	30
89	Mechanical characteristics and strengthening effectiveness of random-chopped FRP composites containing air voids. Composites Part B: Engineering, 2014, 62, 159-166.	12.0	29
90	Thermal evolution of hydrates in carbonation-cured Portland cement. Materials and Structures/Materiaux Et Constructions, 2018, 51, 1.	3.1	28

#	Article	IF	Citations
91	A combined molecular dynamics/micromechanics/finite element approach for multiscale constitutive modeling of nanocomposites with interface effects. Applied Physics Letters, 2013, 103, .	3.3	27
92	Evolution of zeolite crystals in geopolymer-supported zeolites: effects of composition of starting materials. Materials Letters, 2019, 239, 33-36.	2.6	27
93	Effect of CaO incorporation on the microstructure and autogenous shrinkage of ternary blend Portland cement-slag-silica fume. Construction and Building Materials, 2020, 249, 118691.	7.2	27
94	Computational investigation of the neutron shielding and activation characteristics of borated concrete with polyethylene aggregate. Journal of Nuclear Materials, 2014, 452, 205-211.	2.7	26
95	Alkali activated slag pastes with surface-modified blast furnace slag. Cement and Concrete Composites, 2017, 76, 39-47.	10.7	26
96	Effects of silica aerogel inclusion on the stability of heat generation and heat-dependent electrical characteristics of cementitious composites with CNT. Cement and Concrete Composites, 2021, 115, 103861.	10.7	26
97	Characterization of blast furnace slag-blended Portland cement for immobilization of Co. Cement and Concrete Research, 2020, 134, 106089.	11.0	26
98	Non-destructive evaluation of concrete quality using PZT transducers. Smart Structures and Systems, 2010, 6, 851-866.	1.9	26
99	Numerical characterization of compressive response and damage evolution in laminated plates containing a cutout. Composites Science and Technology, 2007, 67, 2221-2230.	7.8	25
100	Bond characteristics of sprayed FRP composites bonded to concrete substrate considering various concrete surface conditions. Composite Structures, 2013, 100, 270-279.	5.8	25
101	Interfacial bond behavior of FRP fabrics bonded to fiber-reinforced geopolymer mortar. Composite Structures, 2015, 134, 353-368.	5.8	25
102	Improved electric heating characteristics of CNT-embedded polymeric composites with an addition of silica aerogel. Composites Science and Technology, 2021, 212, 108866.	7.8	25
103	Numerical evaluation of shear strengthening performance of CFRP sheets/strips and sprayed epoxy coating repair systems. Composites Part B: Engineering, 2008, 39, 851-862.	12.0	24
104	A multi-sensing electromechanical impedance method for non-destructive evaluation of metallic structures. Smart Materials and Structures, 2013, 22, 095011.	3.5	24
105	A novel physicomechanical approach to dispersion of carbon nanotubes in polypropylene composites. Composite Structures, 2021, 258, 113377.	5.8	24
106	An elastoplastic multi-level damage model for ductile matrix composites considering evolutionary weakened interface. International Journal of Solids and Structures, 2008, 45, 1614-1631.	2.7	23
107	Image Analysis and DC Conductivity Measurement for the Evaluation of Carbon Nanotube Distribution in Cement Matrix. International Journal of Concrete Structures and Materials, 2015, 9, 427-438.	3.2	23
108	Improved electromagnetic wave shielding capability of carbonyl iron powder-embedded lightweight CFRP composites. Composite Structures, 2022, 286, 115326.	5.8	23

#	Article	IF	Citations
109	A computational approach for prediction of the damage evolution and crushing behavior of chopped random fiber composites. Computational Materials Science, 2004, 29, 459-474.	3.0	22
110	Micromechanics-based viscoelastic damage model for particle-reinforced polymeric composites. Acta Mechanica, 2012, 223, 1307-1321.	2.1	22
111	Binder chemistry of sodium carbonate-activated CFBC fly ash. Materials and Structures/Materiaux Et Constructions, 2018, 51, 1.	3.1	22
112	Computational modeling of the response and damage behavior of fiber reinforced cellular concrete. Computers and Structures, 2004, 82, 581-592.	4.4	21
113	Microstructural evolution and carbonation behavior of lime-slag binary binders. Cement and Concrete Composites, 2021, 119, 104000.	10.7	21
114	An RVE-based micromechanical analysis of fiber-reinforced composites considering fiber size dependency. Composite Structures, 2009, 90, 418-427.	5.8	20
115	A zinc oxide/polyurethane-based generator composite as a self-powered sensor for traffic flow monitoring. Composite Structures, 2015, 134, 579-586.	5.8	20
116	Structural behavior and performance of water pipes rehabilitated with a fast-setting polyurea–urethane lining. Tunnelling and Underground Space Technology, 2016, 52, 192-201.	6.2	20
117	3D Micromechanics and Effective Moduli for Brittle Composites with Randomly Located Interacting Microcracks and Inclusions. International Journal of Damage Mechanics, 2008, 17, 377-417.	4.2	19
118	Effects of biological admixtures on hydration and mechanical properties of Portland cement paste. Construction and Building Materials, 2020, 235, 117461.	7.2	19
119	CO2 Uptake and Physicochemical Properties of Carbonation-Cured Ternary Blend Portland Cement–Metakaolin–Limestone Pastes. Materials, 2020, 13, 4656.	2.9	19
120	Effectiveness of Retrofitting Damaged Concrete Beams with Sprayed Fiber-reinforced Polymer Coating. Journal of Reinforced Plastics and Composites, 2008, 27, 1269-1286.	3.1	18
121	3D-Damage Model for Fiber-Reinforced Brittle Composites with Microcracks and Imperfect Interfaces. Journal of Engineering Mechanics - ASCE, 2009, 135, 1108-1118.	2.9	18
122	Elastoplastic modeling of polymeric composites containing randomly located nanoparticles with an interface effect. Composite Structures, 2013, 99, 123-130.	5.8	18
123	Stability of MgO-modified geopolymeric gel structure exposed to a CO2-rich environment. Construction and Building Materials, 2017, 151, 178-185.	7.2	18
124	Characterization of reactive MgO-modified calcium sulfoaluminate cements upon carbonation. Cement and Concrete Research, 2021, 146, 106484.	11.0	18
125	Elastic-damage Modeling for Particulate Composites Considering Cumulative Damage. International Journal of Damage Mechanics, 2011, 20, 131-158.	4.2	17
126	Structural strengthening and damage behaviors of hybrid sprayed fiber-reinforced polymer composites containing carbon fiber cores. International Journal of Damage Mechanics, 2017, 26, 358-376.	4.2	17

#	Article	IF	CITATIONS
127	Utilization of Calcium Carbide Residue Using Granulated Blast Furnace Slag. Materials, 2019, 12, 3511.	2.9	17
128	Experimental and theoretical studies of hydration of ultra-high performance concrete cured under various curing conditions. Construction and Building Materials, 2021, 278, 122352.	7.2	17
129	Review on recent advances in securing the long-term durability of calcium aluminate cement (CAC)-based systems. Functional Composites and Structures, 2021, 3, 035002.	3.4	17
130	A damage mechanics model of crack-weakened, chopped fiber composites under impact loading. Composites Part B: Engineering, 2002, 33, 25-34.	12.0	16
131	Elastoplastic modeling of circular fiber-reinforced ductile matrix composites considering a finite RVE. International Journal of Solids and Structures, 2010, 47, 827-836.	2.7	16
132	An analytical model to predict curvature effects of the carbon nanotube on the overall behavior of nanocomposites. Journal of Applied Physics, 2014, 116, 033511.	2.5	16
133	Effectiveness of Anchorage in Concrete Beams Retrofitted with Sprayed Fiber-reinforced Polymers. Journal of Reinforced Plastics and Composites, 2004, 23, 1285-1300.	3.1	15
134	Performance Characteristics of Lightweight Aggregate Cellular Concrete Containing Polypropylene Fibers. Journal of Reinforced Plastics and Composites, 2010, 29, 883-898.	3.1	15
135	Interfacial crack-induced debonding behavior of sprayed FRP laminate bonded to RC beams. Composite Structures, 2015, 128, 176-187.	5.8	15
136	Role of Al in the crystal growth of alkali-activated fly ash and slag under a hydrothermal condition. Construction and Building Materials, 2020, 239, 117842.	7.2	15
137	Influence of water ingress on the electrical properties and electromechanical sensing capabilities of CNT/cement composites. Journal of Building Engineering, 2021, 42, 103065.	3.4	15
138	An experimental study on sag-resistance ability and applicability of sprayed FRP system on vertical and overhead concrete surfaces. Materials and Structures/Materiaux Et Constructions, 2015, 48, 21-33.	3.1	14
139	Structural evolution of binder gel in alkali-activated cements exposed to electrically accelerated leaching conditions. Journal of Hazardous Materials, 2020, 387, 121825.	12.4	14
140	A comprehensive micromechanical and experimental study of the electrical conductivity of polymeric composites incorporating carbon nanotube and carbon fiber. Composite Structures, 2021, 268, 114002.	5.8	14
141	Hydration properties of alkali-activated fly ash/slag binders modified by MgO with different reactivity. Journal of Building Engineering, 2021, 44, 103252.	3.4	14
142	Strain rate and adhesive energy dependent viscoplastic damage modeling for nanoparticulate composites: Molecular dynamics and micromechanical simulations. Applied Physics Letters, 2014, 104, 101901.	3.3	13
143	Facile Synthesis of Sprayed CNTs Layer-Embedded Stretchable Sensors with Controllable Sensitivity. Polymers, 2021, 13, 311.	4.5	13
144	Micromechanics-based elastic-damage analysis of laminated composite structures. International Journal of Solids and Structures, 2009, 46, 3138-3149.	2.7	12

#	Article	IF	CITATIONS
145	Piezoresistive characteristics of CNT fiber-incorporated GFRP composites prepared with diversified fabrication schemes. Composite Structures, 2018, 203, 835-843.	5.8	12
146	Enhancement of the modulus of compression of calcium silicate hydrates via covalent synthesis of CNT and silica fume. Construction and Building Materials, 2019, 198, 218-225.	7.2	12
147	Modifications in hydration kinetics and characteristics of calcium aluminate cement upon blending with calcium sulfoaluminate cement. Construction and Building Materials, 2022, 342, 127958.	7.2	12
148	Numerical study on retrofit and strengthening performance of sprayed fiber reinforced polymer. Engineering Structures, 2005, 27, 1476-1487.	5.3	11
149	The Effects of Temperature on the Hydrothermal Synthesis of Hydroxyapatite-Zeolite Using Blast Furnace Slag. Materials, 2019, 12, 2131.	2.9	11
150	Piezoelectric characteristics of urethane composites incorporating piezoelectric nanomaterials. Composite Structures, 2020, 241, 112072.	5.8	10
151	Prediction of crack evolution and effective elastic behavior of damage-tolerant brittle composites. Computer Methods in Applied Mechanics and Engineering, 2006, 196, 118-133.	6.6	9
152	Impact of Bio-Carrier Immobilized with Marine Bacteria on Self-Healing Performance of Cement-Based Materials. Materials, 2020, 13, 4164.	2.9	9
153	Advanced Spray Multiple Layup Process for Quality Control of Sprayed FRP Composites Used to Retrofit Concrete Structures. Journal of Construction Engineering and Management - ASCE, 2015, 141, 04014060.	3.8	8
154	Multiscale approach to predict the effective elastic behavior of nanoparticle-reinforced polymer composites. Interaction and Multiscale Mechanics, 2011, 4, 173-185.	0.4	8
155	A computational investigation of crack evolution and interactions of microcracks and particles in particle-reinforced brittle composites. Composite Structures, 2004, 64, 419-431.	5.8	7
156	Influence of Fiber Volume Fraction and Fiber Type on Mechanical Properties of FRLACC. Journal of Reinforced Plastics and Composites, 2010, 29, 1089-1098.	3.1	7
157	Bond characteristics of SFRP composites containing FRP core/anchors coated on geopolymer mortar. Composite Structures, 2018, 189, 435-442.	5.8	7
158	Pull-off bond behavior of anchored random-chopped FRP composites bonded to concrete. Composite Structures, 2018, 185, 193-202.	5.8	7
159	The Effects of NaOH Concentration on the Hydrothermal Synthesis of a Hydroxyapatite–Zeolite Composite Using Blast Furnace Slag. Minerals (Basel, Switzerland), 2021, 11, 21.	2.0	7
160	A combined experimental and micromechanical approach to investigating PTC and NTC effects in CNT-polypropylene composites under a self-heating condition. Composite Structures, 2022, 289, 115440.	5.8	7
161	Local Al network and material characterization of belite-calcium sulfoaluminate (CSA) cements. Materials and Structures/Materiaux Et Constructions, 2022, 55, 1.	3.1	7
162	Impedance-based non-destructive evaluation of the FRP adhesive joints in corrosive environment with re-usable technique. , $2011,\ldots$		5

#	Article	IF	CITATIONS
163	Selection and management factor analysis of urban infrastructure for U-City construction. KSCE Journal of Civil Engineering, 2013, 17, 1637-1643.	1.9	5
164	Evaluation of physicochemical properties and environmental impact of environmentally amicable Portland cement/metakaolin bricks exposed to humid or CO2 curing condition. Journal of Building Engineering, 2022, 47, 103831.	3.4	5
165	Shear Behavior and Performance of RC Beams with Polymer Mortar Systems Under Cyclic Loading. Journal of Reinforced Plastics and Composites, 2010, 29, 2604-2620.	3.1	4
166	MgO-induced phase variation in alkali-activated binders synthesized under hydrothermal conditions. Materials and Structures/Materiaux Et Constructions, 2021, 54, 1.	3.1	4
167	Shear Behavior and Performance of Deep Beams Reinforced with a Honeycomb Steel Mesh. Advances in Structural Engineering, 2010, 13, 989-999.	2.4	3
168	Exploration of effects of CO2 exposure on the NOx-removal performance of TiO2-incorporated Portland cement evaluated via microstructural and morphological investigation. Journal of Building Engineering, 2022, 45, 103609.	3.4	3
169	Internal carbonation of belite-rich Portland cement: An in-depth observation at the interaction of the belite phase with sodium bicarbonate. Journal of Building Engineering, 2021, 44, 102907.	3.4	2
170	Effect of the molar ratio of calcium sulfate over ye'elimite on the reaction of CSA cement/slag blends under an accelerated carbonation condition. Journal of Building Engineering, 2022, 46, 103785.	3.4	2
171	A Case Study: Bacterial Surface Treatment of Normal and Lightweight Concrete. , 2015, , 359-372.		1
172	Multiscale Virtual Testing Machines of Concrete and Other Composite Materials: A Review. Journal of the Computational Structural Engineering Institute of Korea, 2018, 31, 173-181.	0.4	1
173	Characterization of bio-adsorptive removal performance of strontium through ureolysis-mediated bio-mineralization. Chemosphere, 2022, 288, 132586.	8.2	1