Joachim Kurtz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5869149/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evidence for memory in invertebrate immunity. Nature, 2003, 425, 37-38.	13.7	380
2	Parasite Selection for Immunogenetic Optimality. Science, 2003, 301, 1343-1343.	6.0	318
3	Specific memory within innate immune systems. Trends in Immunology, 2005, 26, 186-192.	2.9	304
4	Introduction. Ecological immunology. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 3-14.	1.8	225
5	Immune memory in invertebrates. Seminars in Immunology, 2016, 28, 328-342.	2.7	221
6	Strain-specific priming of resistance in the red flour beetle, <i>Tribolium castaneum</i> . Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 145-151.	1.2	206
7	Paternally derived immune priming for offspring in the red flour beetle, <i>Tribolium castaneum</i> . Journal of Animal Ecology, 2010, 79, 403-413.	1.3	202
8	Major histocompatibility complex diversity influences parasite resistance and innate immunity in sticklebacks. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 197-204.	1.2	194
9	Gender differences and individual variation in the immune system of the scorpionfly Panorpa vulgaris (Insecta: Mecoptera). Developmental and Comparative Immunology, 2000, 24, 1-12.	1.0	144
10	Cryptic male choice: sperm allocation strategies when female quality varies. Journal of Evolutionary Biology, 2002, 15, 201-209.	0.8	136
11	Alternative adaptive immunity in invertebrates. Trends in Immunology, 2006, 27, 493-496.	2.9	127
12	Heat and immunity: an experimental heat wave alters immune functions in threeâ€ s pined sticklebacks (<i><scp>G</scp>asterosteus aculeatus</i>). Journal of Animal Ecology, 2014, 83, 744-757.	1.3	116
13	Memory in the innate and adaptive immune systems. Microbes and Infection, 2004, 6, 1410-1417.	1.0	110
14	Phagocytosis mediates specificity in the immune defence of an invertebrate, the woodlouse Porcellio scaber (Crustacea: Isopoda). Developmental and Comparative Immunology, 2009, 33, 1151-1155.	1.0	101
15	Immune priming in arthropods: an update focusing on the red flour beetle. Zoology, 2016, 119, 254-261.	0.6	96
16	Local differences in immunocompetence reflect resistance of sticklebacks against the eye fluke Diplostomum pseudospathaceum. Parasitology, 2006, 132, 105-116.	0.7	94
17	Juvenile immune system activation induces a costly upregulation of adult immunity in field crickets Gryllus campestris. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 63-69.	1.2	89
18	The immunocompetence handicap hypothesis: testing the genetic predictions. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 2515-2522.	1.2	87

#	Article	IF	CITATIONS
19	Modulation of granulocyte responses in three-spined sticklebacks Gasterosteus aculeatus infected with the tapeworm Schistocephalus solidus. Diseases of Aquatic Organisms, 2004, 59, 141-150.	0.5	87
20	The Red Flour Beetle as a Model for Bacterial Oral Infections. PLoS ONE, 2013, 8, e64638.	1.1	87
21	Dscam and pancrustacean immune memory – A review of the evidence. Developmental and Comparative Immunology, 2015, 48, 315-323.	1.0	83
22	Mating System and Sexual Selection in the Scorpionfly Panorpa vulgaris (Mecoptera: Panorpidae). Die Naturwissenschaften, 1998, 85, 219-228.	0.6	81
23	An Experimental Test of the Immunocompetence Handicap Hypothesis in a Teleost Fish: 11â€Ketotestosterone Suppresses Innate Immunity in Three‧pined Sticklebacks. American Naturalist, 2007, 170, 509-519.	1.0	80
24	Different effects of paternal trans-generational immune priming on survival and immunity in step and genetic offspring. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20142089.	1.2	73
25	Host–Pathogen Coevolution: The Selective Advantage of Bacillus thuringiensis Virulence and Its Cry Toxin Genes. PLoS Biology, 2015, 13, e1002169.	2.6	69
26	MHC genes and oxidative stress in sticklebacks: an immuno-ecological approach. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 1407-1414.	1.2	63
27	Gender Differences in Phenoloxidase Activity of Panorpa vulgaris Hemocytes. Journal of Invertebrate Pathology, 2001, 78, 53-55.	1.5	62
28	Oral immune priming with Bacillus thuringiensis induces a shift in the gene expression of Tribolium castaneum larvae. BMC Genomics, 2017, 18, 329.	1.2	61
29	Infection routes matter in population-specific responses of the red flour beetle to the entomopathogen Bacillus thuringiensis. BMC Genomics, 2014, 15, 445.	1.2	60
30	Genetic variation in MHC class II expression and interactions with MHC sequence polymorphism in threeâ€spined sticklebacks. Molecular Ecology, 2006, 15, 1153-1164.	2.0	58
31	Microbiota Plays a Role in Oral Immune Priming in Tribolium castaneum. Frontiers in Microbiology, 2015, 6, 1383.	1.5	56
32	The evolution of Dscam genes across the arthropods. BMC Evolutionary Biology, 2012, 12, 53.	3.2	55
33	Juvenile immune status affects the expression of a sexually selected trait in field crickets. Journal of Evolutionary Biology, 2005, 18, 1060-1068.	0.8	52
34	Dnmt1 has an essential function despite the absence of CpG DNA methylation in the red flour beetle Tribolium castaneum. Scientific Reports, 2018, 8, 16462.	1.6	50
35	Experimental evolution of immunological specificity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20598-20604.	3.3	49
36	To avoid or eliminate: cestode infections in copepods. Parasitology, 2002, 124, 465-474.	0.7	47

#	Article	IF	CITATIONS
37	OUTCROSSING INCREASES INFECTION SUCCESS AND COMPETITIVE ABILITY: EXPERIMENTAL EVIDENCE FROM A HERMAPHRODITE PARASITE. Evolution; International Journal of Organic Evolution, 2002, 56, 2243-2251.	1.1	47
38	Increased Survival in the Red Flour Beetle after Oral Priming with Bacteria-Conditioned Media. Journal of Innate Immunity, 2014, 6, 306-314.	1.8	45
39	A summer heat wave decreases the immunocompetence of the mesograzer, Idotea baltica. Marine Biology, 2010, 157, 1605-1611.	0.7	44
40	Effects of environmental variation on host–parasite interaction in three-spined sticklebacks (Gasterosteus aculeatus). Zoology, 2016, 119, 375-383.	0.6	43
41	A temperature shock can lead to transâ€generational immune priming in the Red Flour Beetle, <i>Tribolium castaneum</i> . Ecology and Evolution, 2015, 5, 1318-1326.	0.8	42
42	Phagocytosis by invertebrate hemocytes: Causes of individual variation inPanorpa vulgaris scorpionflies. Microscopy Research and Technique, 2002, 57, 456-468.	1.2	41
43	Surface carbohydrate composition of a tapeworm in its consecutive intermediate hosts: Individual variation and fitness consequences. International Journal for Parasitology, 2005, 35, 1499-1507.	1.3	39
44	Dscam in immunity: A question of diversity in insects and crustaceans. Developmental and Comparative Immunology, 2020, 105, 103539.	1.0	39
45	Evolutionary implications of the adaptation to different immune systems in a parasite with a complex life cycle. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 2511-2518.	1.2	38
46	Environmental temperature variation influences fitness trade-offs and tolerance in a fish-tapeworm association. Parasites and Vectors, 2017, 10, 252.	1.0	38
47	Experimental evolution of external immune defences in the red flour beetle. Journal of Evolutionary Biology, 2014, 27, 1562-1571.	0.8	37
48	Altered host behaviour: manipulation or energy depletion in tapeworm-infected copepods?. Parasitology, 2002, 125, 187-196.	0.7	36
49	Genetic variability in the diapause response of the burnet moth Zygaena trifolii (Lepidoptera:) Tj ETQq1 1 0.7843	14 rgBT /(0.9	Overlock 10
50	Specificity of oral immune priming in the red flour beetle <i>Tribolium castaneum</i> . Biology Letters, 2017, 13, 20170632.	1.0	35
51	The stimulation of immune defence accelerates development in the red flour beetle (<i>Tribolium) Tj ETQq1 1 0.7</i>	784314 rg 0.8	gBT ₃ 90verloc
52	Excretory products of the cestode, Schistocephalus solidus, modulate inÂvitro responses of leukocytes from its specific host, the three-spined stickleback (Gasterosteus aculeatus). Fish and Shellfish Immunology, 2013, 35, 1779-1787.	1.6	32
53	A Novel Mechanism of Immune Memory Unveiled at the Invertebrate–Parasite Interface. Trends in Parasitology, 2016, 32, 353-355.	1.5	32
54	Dscam1 in Pancrustacean Immunity: Current Status and a Look to the Future. Frontiers in Immunology, 2017, 8, 662.	2.2	30

#	Article	IF	CITATIONS
55	Meiotic drive and evolution of female choice. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 1341-1345.	1.2	29
56	Schistocephalus solidus: Establishment of tapeworms in sticklebacks – fast food or fast lane?. Experimental Parasitology, 2007, 116, 142-149.	0.5	28
57	Cu,Zn Superoxide Dismutase Genes in Tribolium castaneum: Evolution, Molecular Characterisation, and Gene Expression during Immune Priming. Frontiers in Immunology, 2017, 8, 1811.	2.2	28
58	Chapter 5 Ecological Immunology of a Tapeworms' Interaction with its Two Consecutive Hosts. Advances in Parasitology, 2009, 68, 111-137.	1.4	27
59	<i>Down syndrome cell adhesion molecule 1</i> : testing for a role in insect immunity, behaviour and reproduction. Royal Society Open Science, 2016, 3, 160138.	1.1	27
60	InÂvitro leukocyte response of three-spined sticklebacks (Gasterosteus aculeatus) to helminth parasite antigens. Fish and Shellfish Immunology, 2014, 36, 130-140.	1.6	26
61	Quantitative Profiling of Drosophila melanogaster Dscam1 Isoforms Reveals No Changes in Splicing after Bacterial Exposure. PLoS ONE, 2014, 9, e108660.	1.1	25
62	Genotype and diet affect resistance, survival, and fecundity but not fecundity tolerance. Journal of Evolutionary Biology, 2018, 31, 159-171.	0.8	24
63	Evaluation of an innate immune reaction to parasites in earthworms. Journal of Invertebrate Pathology, 2004, 86, 45-49.	1.5	23
64	Fluorescent Vital Labeling to Track Cestodes in a Copepod Intermediate Host. Experimental Parasitology, 2002, 100, 36-43.	0.5	21
65	Downregulation of the evolutionary capacitor Hsp90 is mediated by social cues. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20152041.	1.2	20
66	Transgenerational Developmental Effects of Immune Priming in the Red Flour Beetle Tribolium castaneum. Frontiers in Physiology, 2019, 10, 98.	1.3	20
67	How Individualized Niches Arise: Defining Mechanisms of Niche Construction, Niche Choice, and Niche Conformance. BioScience, 2022, 72, 538-548.	2.2	19
68	Specific manipulation or systemic impairment? Behavioural changes of three-spined sticklebacks (Gasterosteus aculeatus) infected with the tapeworm Schistocephalus solidus. Behavioral Ecology and Sociobiology, 2017, 71, 1.	0.6	18
69	The hologenome concept: we need to incorporate function. Theory in Biosciences, 2017, 136, 89-98.	0.6	17
70	Host–parasite coevolution—rapid reciprocal adaptation and its genetic basis. Zoology, 2016, 119, 241-243.	0.6	16
71	A multiâ€faceted approach testing the effects of previous bacterial exposure on resistance and tolerance. Journal of Animal Ecology, 2019, 88, 566-578.	1.3	16
72	InÂvitro effects of prostaglandin E2 on leucocytes from sticklebacks (Gasterosteus aculeatus) infected and not infected with the cestode Schistocephalus solidus. Fish and Shellfish Immunology, 2014, 41, 473-481.	1.6	15

#	Article	IF	CITATIONS
73	Infection of Tribolium castaneum with Bacillus thuringiensis: Quantification of Bacterial Replication within Cadavers, Transmission via Cannibalism, and Inhibition of Spore Germination. Applied and Environmental Microbiology, 2015, 81, 8135-8144.	1.4	15
74	Parasite-infected sticklebacks increase the risk-taking behaviour of uninfected group members. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180956.	1.2	15
75	Consequences of divergent temperature optima in a host–parasite system. Oikos, 2019, 128, 869-880.	1.2	15
76	DNA preparation and efficient microsatellite analysis from insect hemolymph. Electrophoresis, 1998, 19, 3069-3070.	1.3	14
77	Immunosuppression under stress: necessary for condition-dependent signalling?. Trends in Ecology and Evolution, 2000, 15, 418-419.	4.2	14
78	Dissecting the dynamics of transâ \in generational immune priming. Molecular Ecology, 2017, 26, 3857-3859.	2.0	14
79	Sex, parasites and resistance $\hat{a} \in $ an evolutionary approach. Zoology, 2003, 106, 327-339.	0.6	13
80	Response to Comment on "Parasite Selection for Immunogenetic Optimality". Science, 2004, 303, 957b-957.	6.0	13
81	Climate change facilitates a parasite's host exploitation via temperatureâ€mediated immunometabolic processes. Global Change Biology, 2021, 27, 94-107.	4.2	13
82	Morphological Characterisation of Haemocytes in the Mealworm Beetle Tenebrio molitor (Coleoptera, Tenebrionidae). Insects, 2021, 12, 423.	1.0	13
83	Phagocytosis of Vairimorpha sp. (Microsporida, Nosematidae) Spores by Plutella xylostella and Panorpa vulgaris Hemocytes. Journal of Invertebrate Pathology, 2000, 75, 237-239.	1.5	12
84	Continuous Agrochemical Treatments in Agroecosystems Can Modify the Effects of Pendimethalin-Based Herbicide Exposure on Immunocompetence of a Beneficial Ground Beetle. Diversity, 2019, 11, 241.	0.7	12
85	Evolutionary ecology of immune defence in copepods. Journal of Plankton Research, 2007, 29, i27-i38.	0.8	11
86	Population genetic dynamics of threeâ€spined sticklebacks (<i>Gasterosteus aculeatus</i>) in anthropogenic altered habitats. Ecology and Evolution, 2012, 2, 1122-1143.	0.8	10
87	The correlation between immunocompetence and an ornament trait changes over lifetime in Panorpa vulgaris scorpionflies. Zoology, 2007, 110, 336-343.	0.6	9
88	An experimental approach to the immuno-modulatory basis of host-parasite local adaptation in tapeworm-infected sticklebacks. Experimental Parasitology, 2017, 180, 119-132.	0.5	9
89	In vitro effects of the neuroactive substances serotonin and γ-aminobutyric acid on leucocytes from sticklebacks (Gasterosteus aculeatus). Fish and Shellfish Immunology, 2019, 87, 286-296.	1.6	8
90	Ecological immunity of arthropods – a thread of Ariadne?. Trends in Ecology and Evolution, 2002, 17, 204-205.	4.2	7

#	Article	IF	CITATIONS
91	Immune response inÂPorcellioÂscaber (Isopoda: Oniscidea): copper revisited. European Journal of Soil Biology, 2005, 41, 77-83.	1.4	7
92	Resistance is skin-deep: innate immunity may help amphibians to survive a deadly fungus. Animal Conservation, 2007, 10, 422-424.	1.5	7
93	Survival of the Sawfly Athalia rosae Upon Infection by an Entomopathogenic Fungus and in Relation to Clerodanoid Uptake. Frontiers in Physiology, 2021, 12, 637617.	1.3	7
94	Resistance against heterogeneous sequential infections: experimental studies with a tapeworm and its copepod host. Journal of Helminthology, 2006, 80, 199-206.	0.4	6
95	Parasite infection disrupts escape behaviours in fish shoals. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201158.	1.2	6
96	Comparative Mortality and Adaptation of a Smurf Assay in Two Species of Tenebrionid Beetles Exposed to Bacillus thuringiensis. Insects, 2020, 11, 261.	1.0	6
97	Infectivity of two nematode parasites, Camallanus lacustris and Anguillicola crassus, in a paratenic host, the three-spined stickleback Gasterosteus aculeatus. Diseases of Aquatic Organisms, 2007, 74, 119-126.	0.5	6
98	Effects of an anthropogenic saltwater inlet on three-spined stickleback (<i>Gasterosteus) Tj ETQq0 0 0 rgBT /Ove</i>	rlock 10 T	f 50 462 Td
99	Oral Immune Priming Treatment Alters Microbiome Composition in the Red Flour Beetle Tribolium castaneum. Frontiers in Microbiology, 2022, 13, 793143.	1.5	5
100	Conditionâ€dependence and sexual ornamentation: Effects of immune challenges on a highly sexually dimorphic grasshopper. Insect Science, 2018, 25, 617-630.	1.5	4
101	Early stages of infection of threeâ€spined stickleback (<i>Gasterosteus aculeatus</i>) with the cestode <i>Schistocephalus solidus</i> . Journal of Fish Diseases, 2018, 41, 1701-1708.	0.9	4
102	Shifts between cooperation and antagonism driven by individual variation: a systematic synthesis review. Oikos, 2022, 2022, .	1.2	4
103	Serial passage in an insect host indicates genetic stability of the human probiotic <i>Escherichia coli</i> Nissle 1917. Evolution, Medicine and Public Health, 2022, 10, 71-86.	1.1	4
104	Paternal knockdown of <scp>tRNA</scp> (cytosineâ€5â€)â€methyltransferase (<i>Dnmt2</i>) increases offspring susceptibility to infection in red flour beetles. Insect Molecular Biology, 2022, 31, 711-721.	1.0	4
105	Beyond Standardization: Improving External Validity and Reproducibility in Experimental Evolution. BioScience, 2021, 71, 543-552.	2.2	3
106	Integrating Evolutionary Aspects into Dual-Use Discussion: The Cases of Influenza Virus and Enterohaemorrhagic Escherichia coli. Evolution, Medicine and Public Health, 2021, 9, 383-392.	1.1	3
107	Parasite infection impairs the shoaling behaviour of uninfected shoal members under predator attack. Behavioral Ecology and Sociobiology, 2021, 75, 1.	0.6	3
108	OUTCROSSING INCREASES INFECTION SUCCESS AND COMPETITIVE ABILITY: EXPERIMENTAL EVIDENCE FROM A HERMAPHRODITE PARASITE. Evolution; International Journal of Organic Evolution, 2002, 56, 2243.	1.1	2

#	Article	IF	CITATIONS
109	Far from simple: insect immune defences. Trends in Ecology and Evolution, 2010, 25, 12-13.	4.2	0