Takayuki Fujiwara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/586914/publications.pdf Version: 2024-02-01

Τλκλνιικι Ειπιλλαρλ

#	Article	IF	CITATIONS
1	Smooth Loop-Like Mitochondrial Nucleus in the Primitive Red Alga <i>Cyanidioschyzon merolae</i> Revealed by Drying Treatment. Cytologia, 2021, 86, 89-96.	0.6	2
2	Cell size for commitment to cell division and number of successive cell divisions in cyanidialean red algae. Protoplasma, 2021, 258, 1103-1118.	2.1	9
3	Development of a Novel Nanoarchitecture of the Robust Photosystem I from a Volcanic Microalga Cyanidioschyzon merolae on Single Layer Graphene for Improved Photocurrent Generation. International Journal of Molecular Sciences, 2021, 22, 8396.	4.1	7
4	CZON-cutter – a CRISPR-Cas9 system for multiplexed organelle imaging in a simple unicellular alga. Journal of Cell Science, 2021, 134, .	2.0	3
5	A cotransformation system of the unicellular red alga Cyanidioschyzon merolae with blasticidin S deaminase and chloramphenicol acetyltransferase selectable markers. BMC Plant Biology, 2021, 21, 573.	3.6	4
6	Changes in the transcriptome, ploidy, and optimal light intensity of a cryptomonad upon integration into a kleptoplastic dinoflagellate. ISME Journal, 2020, 14, 2407-2423.	9.8	12
7	Efficient open cultivation of cyanidialean red algae in acidified seawater. Scientific Reports, 2020, 10, 13794.	3.3	23
8	Relationship between Cell Cycle and Diel Transcriptomic Changes in Metabolism in a Unicellular Red Alga. Plant Physiology, 2020, 183, 1484-1501.	4.8	17
9	Evolutionary Changes in DnaA-Dependent Chromosomal Replication in Cyanobacteria. Frontiers in Microbiology, 2020, 11, 786.	3.5	12
10	ESCRT Machinery Mediates Cytokinetic Abscission in the Unicellular Red Alga Cyanidioschyzon merolae. Frontiers in Cell and Developmental Biology, 2020, 8, 169.	3.7	14
11	Mitotic Karyotype of the Primitive Red Alga <i>Cyanidioschyzon merolae</i> 10D. Cytologia, 2020, 85, 107-113.	0.6	6
12	Day/Night Separation of Oxygenic Energy Metabolism and Nuclear DNA Replication in the Unicellular Red Alga <i>Cyanidioschyzon merolae</i> . MBio, 2019, 10, .	4.1	10
13	Responses of unicellular predators to cope with the phototoxicity of photosynthetic prey. Nature Communications, 2019, 10, 5606.	12.8	11
14	Acidophilic green algal genome provides insights into adaptation to an acidic environment. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8304-E8313.	7.1	93
15	Glycosyltransferase MDR1 assembles a dividing ring for mitochondrial proliferation comprising polyglucan nanofilaments. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13284-13289.	7.1	22
16	Development of a Double Nuclear Gene-Targeting Method by Two-Step Transformation Based on a Newly Established Chloramphenicol-Selection System in the Red Alga Cyanidioschyzon merolae. Frontiers in Plant Science, 2017, 8, 343.	3.6	19
17	Evolution of cytokinesis-related protein localization during the emergence of multicellularity in volvocine green algae. BMC Evolutionary Biology, 2017, 17, 243.	3.2	9
18	Cell size for commitment to cell division and number of successive cell divisions in multicellular volvocine green algae <i>Tetrabaena socialis</i> and <i>Gonium pectorale</i> . Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2017, 93, 832-840.	3.8	7

Takayuki Fujiwara

#	Article	IF	CITATIONS
19	Development of analytical tools for studying division and inheritance of organelles using based on simple cytological and genomic features of the unicellular red alga <i>Cyanidioschyzon merolae</i> . Plant Morphology, 2017, 29, 91-97.	0.1	0
20	Intracellular Structure of the Unicellular Red Alga <i>Cyanidioschyzon merolae</i> in Response to Phosphate Depletion and Resupplementation. Cytologia, 2016, 81, 341-347.	0.6	8
21	Chloroplast division checkpoint in eukaryotic algae. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7629-E7638.	7.1	38
22	Photorespiratory glycolate oxidase is essential for the survival of the red alga <i>Cyanidioschyzon merolae</i> under ambient CO ₂ conditions. Journal of Experimental Botany, 2016, 67, 3165-3175.	4.8	31
23	A nitrogen source-dependent inducible and repressible gene expression system in the red alga Cyanidioschyzon merolae. Frontiers in Plant Science, 2015, 6, 657.	3.6	32
24	Development of a Heat-Shock Inducible Gene Expression System in the Red Alga Cyanidioschyzon merolae. PLoS ONE, 2014, 9, e111261.	2.5	30
25	Algae Sense Exact Temperatures: Small Heat Shock Proteins Are Expressed at the Survival Threshold Temperature in Cyanidioschyzon merolae and Chlamydomonas reinhardtii. Genome Biology and Evolution, 2014, 6, 2731-2740.	2.5	63
26	Translation-independent circadian control of the cell cycle in a unicellular photosynthetic eukaryote. Nature Communications, 2014, 5, 3807.	12.8	63
27	Golgi inheritance in the primitive red alga, Cyanidioschyzon merolae. Protoplasma, 2013, 250, 943-948.	2.1	19
28	Spatiotemporal dynamics of condensins I and II: evolutionary insights from the primitive red alga Cyanidioschyzon merolae. Molecular Biology of the Cell, 2013, 24, 2515-2527.	2.1	51
29	Single-membrane–bounded peroxisome division revealed by isolation of dynamin-based machinery. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9583-9588.	7.1	39
30	Gene Targeting in the Red Alga Cyanidioschyzon merolae: Single- and Multi-Copy Insertion Using Authentic and Chimeric Selection Markers. PLoS ONE, 2013, 8, e73608.	2.5	44
31	Lipid Droplets of Bacteria, Algae and Fungi and a Relationship between their Contents and Genome Sizes as Revealed by BODIPY and DAPI Staining. Cytologia, 2012, 77, 289-299.	0.6	11
32	Chloroplasts Divide by Contraction of a Bundle of Nanofilaments Consisting of Polyglucan. Science, 2010, 329, 949-953.	12.6	95
33	The Coiled-Coil Protein VIG1 Is Essential for Tethering Vacuoles to Mitochondria during Vacuole Inheritance of Cyanidioschyzon merolae Â. Plant Cell, 2010, 22, 772-781.	6.6	35
34	Periodic Gene Expression Patterns during the Highly Synchronized Cell Nucleus and Organelle Division Cycles in the Unicellular Red Alga Cyanidioschyzon merolae. DNA Research, 2009, 16, 59-72.	3.4	68
35	R2R3-type MYB transcription factor, CmMYB1, is a central nitrogen assimilation regulator in <i>Cyanidioschyzon merolae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12548-12553.	7.1	112
36	The Bacterial ZapA-like Protein ZED Is Required for Mitochondrial Division. Current Biology, 2009, 19, 1491-1497.	3.9	46

#	Article	IF	CITATIONS
37	A 100%-complete sequence reveals unusually simple genomic features in the hot-spring red alga Cyanidioschyzon merolae. BMC Biology, 2007, 5, 28.	3.8	269