
## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5868937/publications.pdf Version: 2024-02-01



Ριμ Ρλν

| #  | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Progress on metal-support interactions in Pd-based catalysts for automobile emission control.<br>Journal of Environmental Sciences, 2023, 125, 401-426.                                                                  | 3.2  | 21        |
| 2  | A Facile One Step Synthesis of MoS2/g-C3N4 Photocatalyst with Enhanced Visible Light Photocatalytic<br>Hydrogen Production. Catalysis Letters, 2022, 152, 972-979.                                                       | 1.4  | 8         |
| 3  | A strategy to construct a highly active Co <sub><i>x</i></sub> P/SrTiO <sub>3</sub> (Al) catalyst to boost the photocatalytic overall water splitting reactions. Nanoscale, 2022, 14, 2427-2433.                         | 2.8  | 5         |
| 4  | Effects of MoO on dispersion of vanadia and low-temperature NH3-SCR activity of titania supported catalysts: Liquid acidity and steric hindrance. Applied Surface Science, 2022, 585, 152710.                            | 3.1  | 7         |
| 5  | An isolation strategy to anchor atomic Ni or Co cocatalysts on TiO2(A) for photocatalytic hydrogen<br>production. Nano Research, 2022, 15, 5848-5856.                                                                    | 5.8  | 20        |
| 6  | Combining Cu-SSZ-13 with TiO <sub>2</sub> : promotion of urea decomposition and influence on SCR.<br>Reaction Chemistry and Engineering, 2022, 7, 2121-2131.                                                             | 1.9  | 2         |
| 7  | Tungsten Oxide Modified V2O5-Sb2O3/TiO2 Monolithic Catalyst: NH3-SCR Activity and Sulfur<br>Resistance. Processes, 2022, 10, 1333.                                                                                       | 1.3  | 0         |
| 8  | Quasi- <i>operando</i> quantification of Cu( <scp>ii</scp> ) ions in Cu-SSZ-13 catalyst by an<br>NH <sub>3</sub> temperature-programmed reduction method. Chemical Communications, 2021, 57,<br>1891-1894.               | 2.2  | 13        |
| 9  | Nitrogen doped graphene quantum dots as a cocatalyst of SrTiO <sub>3</sub> (Al)/CoO <sub>x</sub><br>for photocatalytic overall water splitting. Catalysis Science and Technology, 2021, 11, 3039-3046.                   | 2.1  | 17        |
| 10 | Synthesis of Highly-Dispersed Ni/Mesoporous Silica via an Ammonia Evaporation Method for Dry<br>Reforming of Methane: Effect of the Ni Loadings. Catalysis Surveys From Asia, 2021, 25, 312-323.                         | 1.0  | 20        |
| 11 | Highly effective La-deficient La Ce MnO3 mixed oxides for the complete oxidation of methane. Progress<br>in Natural Science: Materials International, 2021, 31, 373-378.                                                 | 1.8  | 4         |
| 12 | The controlled preparation and performance of Fe, Co-modified porous ceria nanorods for the total oxidation of propane. Molecular Catalysis, 2020, 480, 110663.                                                          | 1.0  | 12        |
| 13 | Critical roles of Cu(OH)2 in low-temperature moisture-induced degradation of Cu-SAPO-34 SCR<br>catalyst: Correlating reversible and irreversible deactivation. Applied Catalysis B: Environmental,<br>2020, 278, 119306. | 10.8 | 35        |
| 14 | Deposition of Potassium Salts on Soot Oxidation Activity of Cu-SSZ-13 as a SCRF Catalyst: Laboratory<br>Study. Catalysis Surveys From Asia, 2020, 24, 250-258.                                                           | 1.0  | 5         |
| 15 | Size effect of Pt nanoparticles in acid-assisted soot oxidation in the presence of NO. Journal of Environmental Sciences, 2020, 94, 64-71.                                                                               | 3.2  | 14        |
| 16 | Cobalt-Doped MnO <sub>2</sub> Nanofibers for Enhanced Propane Oxidation. ACS Applied Nano<br>Materials, 2019, 2, 4417-4426.                                                                                              | 2.4  | 41        |
| 17 | Low-Temperature Solid-State Ion-Exchange Method for Preparing Cu-SSZ-13 Selective Catalytic<br>Reduction Catalyst. ACS Catalysis, 2019, 9, 6962-6973.                                                                    | 5.5  | 37        |
| 18 | A comprehensive study on sulfur tolerance of niobia modified CeO2/WO3-TiO2 catalyst for<br>low-temperature NH3-SCR. Applied Catalysis A: General, 2019, 580, 121-130.                                                    | 2.2  | 40        |

| #  | Article                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Nickel doping MnO2 with abundant surface pits as highly efficient catalysts for propane deep oxidation. Chemical Engineering Journal, 2019, 369, 1129-1137.                                 | 6.6  | 72        |
| 20 | Tuning nonstoichiometric defects in single-phase MnOx for methane complete oxidation. Molecular<br>Catalysis, 2019, 467, 120-127.                                                           | 1.0  | 10        |
| 21 | Atomic palladium on graphitic carbon nitride as a hydrogen evolution catalyst under visible light irradiation. Communications Chemistry, 2019, 2, .                                         | 2.0  | 57        |
| 22 | Enhanced low-temperature NO oxidation by iron-modified MnO2 catalysts. Catalysis Communications, 2019, 119, 139-143.                                                                        | 1.6  | 17        |
| 23 | Facile synthesis of NaOH-promoted Pt/TiO2 catalysts for toluene oxidation under visible light irradiation. Applied Surface Science, 2019, 469, 246-252.                                     | 3.1  | 28        |
| 24 | Pd–Ag@CeO <sub>2</sub> Catalyst of Core–Shell Structure for Low Temperature Oxidation of<br>Toluene Under Visible Light Irradiation. Journal of Physical Chemistry C, 2019, 123, 1761-1769. | 1.5  | 30        |
| 25 | Quantitative control and identification of copper species in Cu–SAPO-34: a combined UV–vis spectroscopic and H2-TPR analysis. Research on Chemical Intermediates, 2019, 45, 1309-1325.      | 1.3  | 21        |
| 26 | SO2 promoted V2O5-MoO3/TiO2 catalyst for NH3-SCR of NO at low temperatures. Applied Catalysis A:<br>General, 2019, 570, 42-50.                                                              | 2.2  | 69        |
| 27 | A high-surface-area La-Ce-Mn mixed oxide with enhanced activity for CO and C3H8 oxidation. Catalysis<br>Communications, 2018, 105, 26-30.                                                   | 1.6  | 18        |
| 28 | Unique redox properties in defective CeO2-x nanocrystallines synthesized by laser melting. Science<br>China Materials, 2018, 61, 1078-1084.                                                 | 3.5  | 5         |
| 29 | Urea-related reactions and their active sites over Cu-SAPO-34: Formation of NH3 and conversion of HNCO. Applied Catalysis B: Environmental, 2018, 227, 198-208.                             | 10.8 | 26        |
| 30 | TRA and DRIFTS studies of the fast SCR reaction over CeO2/TiO2 catalyst at low temperatures. Applied Catalysis A: General, 2018, 557, 46-54.                                                | 2.2  | 59        |
| 31 | Controlled pore size of Pt/KIT-6 used for propane total oxidation. Rare Metals, 2018, 37, 123-128.                                                                                          | 3.6  | 11        |
| 32 | Fabrication of hollow-structured FeO -MnO oxidative catalysts with ultra-large surface area.<br>Catalysis Communications, 2018, 104, 13-16.                                                 | 1.6  | 12        |
| 33 | MnOx–CeO2 mixed oxides for diesel soot oxidation: a review. Catalysis Surveys From Asia, 2018, 22,<br>230-240.                                                                              | 1.0  | 33        |
| 34 | High selectivity of CO <sub>2</sub> hydrogenation to CO by controlling the valence state of nickel using perovskite. Chemical Communications, 2018, 54, 7354-7357.                          | 2.2  | 49        |
| 35 | Improved activity and durability of Rh-based three-way catalyst under diverse aging atmospheres by ZrO 2 support. Journal of Environmental Sciences, 2017, 52, 197-203.                     | 3.2  | 20        |
| 36 | A novel insight into enhanced propane combustion performance on PtUSY catalyst. Rare Metals, 2017,<br>36, 1-9.                                                                              | 3.6  | 64        |

| #  | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Synergistic effect of CeO 2 modified TiO 2 photocatalyst on the enhancement of visible light photocatalytic performance. Journal of Alloys and Compounds, 2017, 714, 560-566.                                                     | 2.8  | 88        |
| 38 | Decomposition behavior of ammonium nitrate on ceria catalysts and its role in the NH <sub>3</sub> -SCR reaction. Catalysis Science and Technology, 2017, 7, 2531-2541.                                                            | 2.1  | 19        |
| 39 | Controllable synthesis of supported platinum catalysts: acidic support effect and soot oxidation catalysis. Catalysis Science and Technology, 2017, 7, 3268-3274.                                                                 | 2.1  | 9         |
| 40 | Influence of morphology on basicity of CeO 2 and its use in 2-chloroethyl ethyl sulfide degradation.<br>Journal of Rare Earths, 2017, 35, 970-976.                                                                                | 2.5  | 19        |
| 41 | Nb-modified Mn/Ce/Ti catalyst for the selective catalytic reduction of NO with NH 3 at low temperature. Applied Catalysis A: General, 2017, 545, 64-71.                                                                           | 2.2  | 99        |
| 42 | Study of Ag/CeO2 catalysts for naphthalene oxidation: Balancing the oxygen availability and oxygen regeneration capacity. Applied Catalysis B: Environmental, 2017, 219, 231-240.                                                 | 10.8 | 62        |
| 43 | Migration, reactivity, and sulfur tolerance of copper species in SAPO-34 zeolite toward NO <sub>x</sub> reduction with ammonia. RSC Advances, 2017, 7, 37787-37796.                                                               | 1.7  | 13        |
| 44 | Ageing resistance of rhodium supported on CeO 2 –ZrO 2 and ZrO 2 : Rhodium nanoparticle structure and Rh–support interaction under diverse ageing atmosphere. Catalysis Today, 2017, 281, 490-499.                                | 2.2  | 37        |
| 45 | Evolution of copper species on Cu/SAPO-34 SCR catalysts upon hydrothermal aging. Catalysis Today, 2017, 281, 596-604.                                                                                                             | 2.2  | 92        |
| 46 | Localized Surface Plasmon Resonance Assisted Photothermal Catalysis of CO and Toluene Oxidation<br>over Pd–CeO <sub>2</sub> Catalyst under Visible Light Irradiation. Journal of Physical Chemistry C,<br>2016, 120, 29116-29125. | 1.5  | 62        |
| 47 | Regeneration of sintered Rh/ZrO2 catalysts via Rh re-dispersion and Rh–ZrO2 interaction. Science<br>China Technological Sciences, 2016, 59, 1023-1028.                                                                            | 2.0  | 3         |
| 48 | NO catalytic oxidation over an ultra-large surface area LaMnO3+δ perovskite synthesized by an<br>acid-etching method. RSC Advances, 2016, 6, 69855-69860.                                                                         | 1.7  | 21        |
| 49 | Effect of water vapor on sulfur poisoning of<br>MnO <sub>x</sub> –CeO <sub>2</sub> /Al <sub>2</sub> O <sub>3</sub> catalyst for diesel soot<br>oxidation. RSC Advances, 2016, 6, 57033-57040.                                     | 1.7  | 8         |
| 50 | Two-step thermochemical looping using modified ceria-based materials for splitting CO2. Journal of<br>Materials Science, 2016, 51, 2299-2306.                                                                                     | 1.7  | 19        |
| 51 | Design and Preparation of MnO <sub>2</sub> /CeO <sub>2</sub> –MnO <sub>2</sub> Double-Shelled<br>Binary Oxide Hollow Spheres and Their Application in CO Oxidation. ACS Applied Materials &<br>Interfaces, 2016, 8, 8670-8677.    | 4.0  | 128       |
| 52 | Phase structures, morphologies, and NO catalytic oxidation activities of single-phase MnO2 catalysts.<br>Applied Catalysis A: General, 2016, 514, 24-34.                                                                          | 2.2  | 96        |
| 53 | Nanostructured platinum in ordered mesoporous silica as novel efficient catalyst for propane total oxidation. RSC Advances, 2016, 6, 30170-30175.                                                                                 | 1.7  | 10        |
| 54 | A new insight into the effects of barium addition on Pd-only catalysts: Pd-support interface and CO+NO reaction pathway. Applied Catalysis A: General, 2015, 501, 17-26.                                                          | 2.2  | 17        |

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Re-dispersion of Pd on Ce0.5Zr0.5O2 upon cooling in the presence of oxygen. Catalysis Today, 2015, 253, 51-56.                                                                                                            | 2.2 | 14        |
| 56 | Roles of Acid Sites on Pt/H-ZSM5 Catalyst in Catalytic Oxidation of Diesel soot. ACS Catalysis, 2015, 5, 909-919.                                                                                                         | 5.5 | 112       |
| 57 | Formation of BaMnO3 in Ba/MnO –CeO2 catalyst upon the hydrothermal ageing and its effects on oxide sintering and soot oxidation activity. Catalysis Today, 2015, 253, 83-88.                                              | 2.2 | 19        |
| 58 | Pt/Zeolite Catalysts for Soot Oxidation: Influence of Hydrothermal Aging. Journal of Physical Chemistry C, 2015, 119, 17218-17227.                                                                                        | 1.5 | 34        |
| 59 | A facile ceria–zirconia binary oxide used for degradation of 2-chloroethyl ethyl sulfide. Journal of<br>Materials Science, 2015, 50, 6268-6276.                                                                           | 1.7 | 17        |
| 60 | Pd–Ce0.33Zr0.67O2–Al2O3 catalyst for propane oxidation: Interactions between the precious metal and support under the hydrothermal ageing. Catalysis Today, 2015, 242, 322-328.                                           | 2.2 | 14        |
| 61 | Structure and oxygen storage capacity of Pd/Pr/CeO2-ZrO2 catalyst: effects of impregnated praseodymia. Journal of Rare Earths, 2014, 32, 108-116.                                                                         | 2.5 | 22        |
| 62 | Comparative study of Mn/TiO2 and Mn/ZrO2 catalysts for NO oxidation. Catalysis Communications, 2014, 56, 36-40.                                                                                                           | 1.6 | 50        |
| 63 | Insight into the effects of different ageing protocols on Rh/Al2O3 catalyst. Applied Surface Science, 2014, 308, 230-236.                                                                                                 | 3.1 | 23        |
| 64 | NO reduction by CO over Rh/Al2O3 and Rh/AlPO4 catalysts: Metal–support interaction and thermal aging. Journal of Colloid and Interface Science, 2013, 408, 157-163.                                                       | 5.0 | 30        |
| 65 | Comparative study of ageing condition effects on Pd/Ce0.5Zr0.5O2 and Pd/Al2O3 catalysts: Catalytic activity, palladium nanoparticle structure and Pd-support interaction. Applied Catalysis A: General, 2013, 457, 52-61. | 2.2 | 67        |
| 66 | Oxygen storage capacity and structural properties of Ni-doped LaMnO3 perovskites. Journal of Alloys and Compounds, 2013, 577, 288-294.                                                                                    | 2.8 | 40        |
| 67 | IR characterization of propane oxidation on Pt/CeO2–ZrO2: The reaction mechanism and the role of Pt. Journal of Molecular Catalysis A, 2012, 356, 100-105.                                                                | 4.8 | 73        |
| 68 | Microstructure and oxygen storage capacity of Sr-modified Pt/CeO2–ZrO2 catalysts. Progress in<br>Natural Science: Materials International, 2012, 22, 7-14.                                                                | 1.8 | 21        |
| 69 | Structure and oxygen storage capacity of Pr-doped Ce0.26Zr0.74O2 mixed oxides. Journal of Rare Earths, 2011, 29, 1053-1059.                                                                                               | 2.5 | 21        |
| 70 | Modification of Pd–CeO2 catalyst by different treatments: Effect on the structure and CO oxidation activity. Applied Surface Science, 2011, 257, 3878-3883.                                                               | 3.1 | 51        |
| 71 | MnO –CeO2–Al2O3 mixed oxides for soot oxidation: Activity and thermal stability. Journal of<br>Hazardous Materials, 2011, 187, 283-290.                                                                                   | 6.5 | 127       |
| 72 | NO2-aided Soot Oxidation on LaMn0.7Ni0.3O3 Perovkite-type Catalyst. Catalysis Letters, 2009, 131,<br>494-499.                                                                                                             | 1.4 | 12        |

| #  | Article                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Thermal ageing of Pt on low-surface-area CeO2–ZrO2–La2O3 mixed oxides: Effect on the OSC performance. Applied Catalysis B: Environmental, 2008, 81, 38-48. | 10.8 | 206       |
| 74 | Influence of the oxidative/reductive treatments on the activity of Pt/Ce0.67Zr0.33O2 catalyst. Applied Surface Science, 2005, 245, 162-171.                | 3.1  | 53        |