
Edvinas Orentas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5868717/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Catalysis with Anion–π Interactions. Angewandte Chemie - International Edition, 2013, 52, 9940-9943.	13.8	173
2	An Approach to Helical Tubular Self-Aggregation Using C2-Symmetric Self-Complementary Hydrogen-Bonding Cavity Molecules. Journal of the American Chemical Society, 2006, 128, 8272-8285.	13.7	60
3	Enantioselective self-sorting on planar, π-acidic surfaces of chiral anion-π transporters. Chemical Science, 2012, 3, 1121.	7.4	59
4	A quantitative model for the transcription of 2D patterns into functional 3D architectures. Nature Chemistry, 2012, 4, 746-750.	13.6	54
5	Chemoselective Deprotection of Sulfonamides Under Acidic Conditions: Scope, Sulfonyl Group Migration, and Synthetic Applications. Journal of Organic Chemistry, 2017, 82, 13423-13439.	3.2	50
6	Selective Formation of <i>S</i> ₄ - and <i>T</i> -Symmetric Supramolecular Tetrahedral Cages and Helicates in Polar Media Assembled via Cooperative Action of Coordination and Hydrogen Bonds. Journal of the American Chemical Society, 2020, 142, 3658-3670.	13.7	45
7	Toward Oriented Surface Architectures with Three Coaxial Charge-Transporting Pathways. Journal of the American Chemical Society, 2013, 135, 12082-12090.	13.7	43
8	Understanding the limitations of NIR-to-visible photon upconversion in phthalocyanine-sensitized rubrene systems. Journal of Materials Chemistry C, 2020, 8, 5525-5534.	5.5	35
9	Realization of deep-blue TADF in sterically controlled naphthyridines for vacuum- and solution-processed OLEDs. Journal of Materials Chemistry C, 2020, 8, 8560-8566.	5.5	32
10	Impact of <i>t</i> -butyl substitution in a rubrene emitter for solid state NIR-to-visible photon upconversion. Physical Chemistry Chemical Physics, 2020, 22, 7392-7403.	2.8	32
11	Composition- and Size-Controlled Cyclic Self-Assembly by Solvent- and C ₆₀ -Responsive Self-Sorting. Journal of the American Chemical Society, 2013, 135, 15263-15268.	13.7	30
12	High efficiency and extremely low roll-off solution- and vacuum-processed OLEDs based on isophthalonitrile blue TADF emitter. Chemical Engineering Journal, 2021, 412, 128574.	12.7	30
13	Nâ€Protected 1,2â€Oxazetidines as a Source of Electrophilic Oxygen: Straightforward Access to Benzomorpholines and Related Heterocycles by Using a Reactive Tether. Chemistry - A European Journal, 2015, 21, 9157-9164.	3.3	29
14	Stimuli-controlled self-assembly of diverse tubular aggregates from one single small monomer. Nature Communications, 2017, 8, 14943.	12.8	28
15	Topology Selection and Tautoleptic Aggregation: Formation of an Enantiomerically Pure Supramolecular Belt over a Helix. Angewandte Chemie - International Edition, 2011, 50, 2071-2074.	13.8	25
16	An Enantiopure Hydrogenâ€Bonded Octameric Tube: Selfâ€Sorting and Guestâ€Induced Rearrangement. Angewandte Chemie - International Edition, 2016, 55, 208-212.	13.8	24
17	Directional stack exchange along oriented oligothiophene stacks. Chemical Communications, 2012, 48, 10618.	4.1	21
18	A Remarkably Complex Supramolecular Hydrogen-Bonded Decameric Capsule Formed from an Enantiopure <i>C</i> ₂ -Symmetric Monomer by Solvent-Responsive Aggregation. Journal of the American Chemical Society, 2015, 137, 10536-10546.	13.7	17

Edvinas Orentas

#	Article	IF	CITATIONS
19	N-Tosyl-1,5,2,6-dithiadiazocane: a waste-free electrophilic sulfur reagent for the efficient synthesis of medium-ring S,N-heterocycles. Chemical Communications, 2016, 52, 4325-4328.	4.1	17
20	Self-organizing surface-initiated polymerization, templated self-sorting and templated stack exchange: synthetic methods to build complex systems. Organic and Biomolecular Chemistry, 2013, 11, 1754.	2.8	16
21	TADF Parameters in the Solid State: An Easy Way to Draw Wrong Conclusions. Journal of Physical Chemistry A, 2021, 125, 1637-1641.	2.5	16
22	Enantiospecific Synthesis and Chiroptical Properties of Bicyclic Enones. European Journal of Organic Chemistry, 2007, 2007, 4251-4256.	2.4	15
23	Efficient NIR-to-vis photon upconversion in binary rubrene films deposited by simplified thermal evaporation. Journal of Materials Chemistry C, 2022, 10, 6314-6322.	5.5	13
24	Chirality, a never-ending source of confusion. Zeitschrift Für Kristallographie, 2009, 224, .	1.1	12
25	Network analysis of bicyclo[3.3.1]nonanes: the diol, the dione and the acetal. CrystEngComm, 2009, 11, 1837.	2.6	12
26	Recent Progress with Functional Biosupramolecular Systems. Langmuir, 2011, 27, 9696-9705.	3.5	12
27	NIR-to-vis photon upconversion in rubrenes with increasing structural complexity. Journal of Materials Chemistry C, 2021, 9, 4359-4366.	5.5	12
28	Synthetic and crystallographic studies of bicyclo[3.3.1]nonane derivatives: from strong to weak hydrogen bonds and the stereochemistry of network formation. CrystEngComm, 2012, 14, 178-187.	2.6	11
29	Fully Supramolecular Chiral Hydrogen-Bonded Molecular Tweezer. Journal of the American Chemical Society, 2022, 144, 8231-8241.	13.7	11
30	A Tautoleptic Approach to Chiral Hydrogenâ€Bonded Supramolecular Tubular Polymers with Large Cavity. Chemistry - A European Journal, 2018, 24, 14028-14033.	3.3	10
31	Synthesis, Enantiomer Separation, and Absolute Configuration of 2,6-Oxygenated 9-Azabicyclo[3.3.1]nonanes. Journal of Organic Chemistry, 2013, 78, 5339-5348.	3.2	9
32	Baker's Yeast for Sweet Dough Enables Large-Scale Synthesis of Enantiomerically Pure Bicyclo[3.3.1]nonane-2,6-dione. Synthesis, 2009, 2009, 864-867.	2.3	7
33	An Enolateâ€Structureâ€Enabled Anionic Cascade Cyclization Reaction: Easy Access to Complex Scaffolds with Contiguous Sixâ€, Fiveâ€, and Fourâ€Membered Rings. Angewandte Chemie - International Edition, 2020, 59, 20120-20128.	13.8	7
34	Supramolecular crowns: a new class of cyclic hydrogen-bonded cavitands. Organic Chemistry Frontiers, 2019, 6, 611-617.	4.5	6
35	Synthesis of Enantiomerically Pure (+)-(1S,2R,5S,6R)-endo,endo- 2,6-Diaminobicyclo[3.3.1]nonane. Synthetic Communications, 2003, 33, 1595-1602.	2.1	5
36	Practical Preparation of Octa- and Tetrabromoperylene Diimides and Derivatives Thereof. Synthesis, 2017, 49, 5176-5182.	2.3	4

Edvinas Orentas

#	Article	IF	CITATIONS
37	Hierarchical Assembly toward Nanoparticles of a Chiral Palladium Supramolecular Complex Based on Bicyclo[3.3.1]nonane Framework. Organometallics, 2019, 38, 2647-2653.	2.3	4
38	Fullerene soot and a fullerene nanodispersion as recyclable heterogeneous off-the-shelf photocatalysts. RSC Advances, 2021, 11, 4104-4111.	3.6	4
39	Enhanced blue TADF in a D–A–D type naphthyridine derivative with an asymmetric carbazole-donor motif. Journal of Materials Chemistry C, 2022, 10, 4813-4820.	5.5	4
40	Engineering antiparallel charge-transfer cascades into supramolecular n/p-heterojunction photosystems: Toward directional self-sorting on surfaces. Faraday Discussions, 2012, 155, 63-77.	3.2	3
41	Stereoselective Selfâ€Sorting on Surfaces: Transcription of Chiral Information. Chirality, 2013, 25, 107-113.	2.6	3
42	Metal Coordination Guided Formation of Discrete Neutral Three-Component Hydrogen-Bonded Architectures. Organic Letters, 2020, 22, 9215-9219.	4.6	3
43	Synthesis of C ―and N ‣ubstituted 1,5,2,6â€Dithiadiazocanes –Electrophilicâ€Nucleophilic Thioamination (ENTA) Reagents. Advanced Synthesis and Catalysis, 2021, 363, 3329.	4.3	2
44	S-Methylthiouronium Improves the Photostability of Methylammonium Lead Iodide Perovskites. ACS Applied Energy Materials, 2021, 4, 6466-6473.	5.1	2
45	Meso-scale surface patterning of self-assembled monolayers with water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 628, 127353.	4.7	2
46	Organic pollutants in water-soluble cavitands and capsules: contortions of molecules in nanospace. Organic Chemistry Frontiers, 0, , .	4.5	2
47	Innenrücktitelbild: Catalysis with Anion-π Interactions (Angew. Chem. 38/2013). Angewandte Chemie, 2013, 125, 10311-10311.	2.0	1
48	Synthesis of Enantiomerically Pure (+)-(1S,2R,5S,6R)-endo,endo-2,6-Diaminobicyclo[3.3.1]nonane ChemInform, 2003, 34, no.	0.0	0
49	Frontispiece: A Tautoleptic Approach to Chiral Hydrogenâ€Bonded Supramolecular Tubular Polymers with Large Cavity. Chemistry - A European Journal, 2018, 24, .	3.3	0
50	An Enolateâ€Structureâ€Enabled Anionic Cascade Cyclization Reaction: Easy Access to Complex Scaffolds with Contiguous Sixâ€, Fiveâ€, and Fourâ€Membered Rings. Angewandte Chemie, 2020, 132, 20295-20303.	2.0	0
51	Four-Membered Rings With One Oxygen and One Nitrogen Atom. , 2021, , .		Ο
52	rac-4,8-Divinylbicyclo[3.3.1]nonane-2,6-dione. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o1357-o1357.	0.2	0