List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5868435/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	E-Cadherin-Deficient Cells Are Sensitive to the Multikinase Inhibitor Dasatinib. Cancers, 2022, 14, 1609.	1.7	4
2	Loss of E-Cadherin Leads to Druggable Vulnerabilities in Sphingolipid Metabolism and Vesicle Trafficking. Cancers, 2022, 14, 102.	1.7	6
3	E-Cadherin-Deficient Epithelial Cells Are Sensitive to HDAC Inhibitors. Cancers, 2022, 14, 175.	1.7	8
4	Modelling hereditary diffuse gastric cancer initiation using transgenic mouseâ€derived gastric organoids and singleâ€cell sequencing. Journal of Pathology, 2021, 254, 254-264.	2.1	11
5	Updated perspective and directions on hereditary diffuse gastric cancer. , 2021, , 217-258.		1
6	Discovery of AL-GDa62 as a Potential Synthetic Lethal Lead for the Treatment of Gastric Cancer. Journal of Medicinal Chemistry, 2021, 64, 18114-18142.	2.9	4
7	Hereditary diffuse gastric cancer: updated clinical practice guidelines. Lancet Oncology, The, 2020, 21, e386-e397.	5.1	237
8	Circulating tumor DNA is a sensitive marker for routine monitoring of treatment response in advanced colorectal cancer. Carcinogenesis, 2020, 41, 1507-1517.	1.3	11
9	Cohesin mutations are synthetic lethal with stimulation of WNT signaling. ELife, 2020, 9, .	2.8	22
10	An estimate of limited duration cancer prevalence in New Zealand using 'big' data. New Zealand Medical Journal, 2020, 133, 49-62.	0.5	1
11	E-cadherin-deficient cells have synthetic lethal vulnerabilities in plasma membrane organisation, dynamics and function. Gastric Cancer, 2019, 22, 273-286.	2.7	24
12	Comparison of Roche Cell-Free DNA collection Tubes to Streck Cell-Free DNA BCT s for sample stability using healthy volunteers. Practical Laboratory Medicine, 2019, 16, e00125.	0.6	18
13	Identification of c.1531C>T Pathogenic Variant in the CDH1 Gene as a Novel Germline Mutation of Hereditary Diffuse Gastric Cancer. International Journal of Molecular Sciences, 2019, 20, 4980.	1.8	12
14	A high-throughput screen to identify novel synthetic lethal compounds for the treatment of E-cadherin-deficient cells. Scientific Reports, 2019, 9, 12511.	1.6	13
15	Allosteric AKT Inhibitors Target Synthetic Lethal Vulnerabilities in E-Cadherin-Deficient Cells. Cancers, 2019, 11, 1359.	1.7	22
16	Clinical spectrum and pleiotropic nature of <i>CDH1</i> germline mutations. Journal of Medical Genetics, 2019, 56, 199-208.	1.5	74
17	Hereditary gastric cancer: what's new? Update 2013–2018. Familial Cancer, 2019, 18, 363-367.	0.9	44
18	Germline CDH1 mutations are a significant contributor to the high frequency of early-onset diffuse gastric cancer cases in New Zealand MÄori. Familial Cancer, 2019, 18, 83-90.	0.9	33

#	Article	IF	CITATIONS
19	E-cadherin signal sequence disruption: a novel mechanism underlying hereditary cancer. Molecular Cancer, 2018, 17, 112.	7.9	11
20	Clinical comparison of noninvasive urine tests for ruling out recurrent urothelial carcinoma. Urologic Oncology: Seminars and Original Investigations, 2017, 35, 531.e15-531.e22.	0.8	94
21	Performance Characteristics of a Multigene Urine Biomarker Test for Monitoring for Recurrent Urothelial Carcinoma in a Multicenter Study. Journal of Urology, 2017, 197, 1419-1426.	0.2	82
22	Genome-wide methylation analysis identifies a core set of hypermethylated genes in CIMP-H colorectal cancer. BMC Cancer, 2017, 17, 228.	1.1	32
23	Risk of stomach cancer in Aotearoa/New Zealand: A MÄori population based case-control study. PLoS ONE, 2017, 12, e0181581.	1.1	15
24	Where to from here? Posthumous healthcare data, digital e(lectronic)-mortality and New Zealand's healthcare future. New Zealand Medical Journal, 2017, 130, 64-70.	0.5	0
25	Hereditary diffuse gastric cancer: updated clinical guidelines with an emphasis on germline <i>CDH1</i> mutation carriers. Journal of Medical Genetics, 2015, 52, 361-374.	1.5	479
26	Hereditary Diffuse Gastric Cancer Syndrome. JAMA Oncology, 2015, 1, 23.	3.4	540
27	Synthetic Lethal Screens Identify Vulnerabilities in GPCR Signaling and Cytoskeletal Organization in E-Cadherin–Deficient Cells. Molecular Cancer Therapeutics, 2015, 14, 1213-1223.	1.9	30
28	A Comparison of Real-Time and Endpoint Cell Viability Assays for Improved Synthetic Lethal Drug Validation. Journal of Biomolecular Screening, 2015, 20, 1286-1293.	2.6	51
29	Culture, law, ethics, and social implications: Is society ready for advanced. Australasian Medical Journal, 2014, 7, 200-202.	0.1	5
30	E-cadherin loss alters cytoskeletal organization and adhesion in non-malignant breast cells but is insufficient to induce an epithelial-mesenchymal transition. BMC Cancer, 2014, 14, 552.	1.1	108
31	Molecular Mechanisms of Hereditary Diffuse Gastric Cancer Initiation and Progression. , 2013, , 51-76.		Ο
32	Early events in cell adhesion and polarity during epithelial-mesenchymal transition. Journal of Cell Science, 2012, 125, 4417-4422.	1.2	286
33	A Multigene Urine Test for the Detection and Stratification of Bladder Cancer in Patients Presenting with Hematuria. Journal of Urology, 2012, 188, 741-747.	0.2	128
34	Hereditary diffuse gastric cancer: translation of CDH1 germline mutations into clinical practice. Gastric Cancer, 2010, 13, 1-10.	2.7	143
35	Oligonucleotide array outperforms SNP array on formalin-fixed paraffin-embedded clinical samples. Cancer Genetics and Cytogenetics, 2010, 198, 1-6.	1.0	10
36	Hereditary diffuse gastric cancer: updated consensus guidelines for clinical management and directions for future research. Journal of Medical Genetics, 2010, 47, 436-444.	1.5	495

PARRY J GUILFORD

#	Article	IF	CITATIONS
37	The International Testicular Cancer Linkage Consortium: A clinicopathologic descriptive analysis of 461 familial malignant testicular germ cell tumor kindred. Urologic Oncology: Seminars and Original Investigations, 2010, 28, 492-499.	0.8	42
38	E-Cadherin Deficiency Initiates Gastric Signet-Ring Cell Carcinoma in Mice and Man. Cancer Research, 2009, 69, 2050-2056.	0.4	147
39	Epigenetic silencing in nonâ€neoplastic epithelia identifies Eâ€cadherin (<i>CDH1</i>) as a target for chemoprevention of lobular neoplasia. Journal of Pathology, 2009, 218, 265-272.	2.1	41
40	Hereditary diffuse gastric cancer: A manifestation of lost cell polarity. Cancer Science, 2009, 100, 1151-1157.	1.7	78
41	Increased levels of active c-Src distinguish invasive from in situ lobular lesions. Breast Cancer Research, 2009, 11, R45.	2.2	28
42	Analysis of the <i>DND1</i> gene in men with sporadic and familial testicular germ cell tumors. Genes Chromosomes and Cancer, 2008, 47, 247-252.	1.5	37
43	A novel diffuse gastric cancer susceptibility variant in E-cadherin (CDH1) intron 2: A case control study in an Italian population. BMC Cancer, 2008, 8, 138.	1.1	13
44	Predicting Clinical Outcome through Molecular Profiling in Stage III Melanoma. Clinical Cancer Research, 2008, 14, 5173-5180.	3.2	62
45	Secreted CXCL1 Is a Potential Mediator and Marker of the Tumor Invasion of Bladder Cancer. Clinical Cancer Research, 2008, 14, 2579-2587.	3.2	95
46	Development of a Multiplex RNA Urine Test for the Detection and Stratification of Transitional Cell Carcinoma of the Bladder. Clinical Cancer Research, 2008, 14, 742-749.	3.2	74
47	Hereditary diffuse gastric cancer and lost cell polarity: a short path to cancer. Future Oncology, 2008, 4, 229-239.	1.1	13
48	Genomic characterization of multiple clinical phenotypes of cancer using multivariate linear regression models. Bioinformatics, 2007, 23, 732-738.	1.8	7
49	Destabilized Adhesion in the Gastric Proliferative Zone and c-Src Kinase Activation Mark the Development of Early Diffuse Gastric Cancer. Cancer Research, 2007, 67, 2480-2489.	0.4	114
50	Multiple Gene Expression Classifiers from Different Array Platforms Predict Poor Prognosis of Colorectal Cancer. Clinical Cancer Research, 2007, 13, 498-507.	3.2	114
51	A short guide to hereditary diffuse gastric cancer. Hereditary Cancer in Clinical Practice, 2007, 5, 183.	0.6	36
52	P21-Activated Kinase 1: A New Molecular Marker for Intravesical Recurrence After Transurethral Resection of Bladder Cancer. Journal of Urology, 2007, 178, 1073-1079.	0.2	44
53	Expression of Krüppel-like factor 5 in human gastric carcinomas. Journal of Cancer Research and Clinical Oncology, 2007, 134, 163-167.	1.2	42
54	Hereditary Diffuse Gastric Cancer: Diagnosis and Management. Clinical Gastroenterology and Hepatology, 2006, 4, 262-275.	2.4	163

#	Article	IF	CITATIONS
55	Genome-wide linkage screen for testicular germ cell tumour susceptibility loci. Human Molecular Genetics, 2006, 15, 443-451.	1.4	138
56	The Y Deletion gr/gr and Susceptibility to Testicular Germ Cell Tumor. American Journal of Human Genetics, 2005, 77, 1034-1043.	2.6	197
57	Prognostic Analysis of E-Cadherin Gene Promoter Hypermethylation in Patients with Surgically Resected, Node-Positive, Diffuse Gastric Cancer. Clinical Cancer Research, 2004, 10, 2784-2789.	3.2	83
58	N-Terminal E-Cadherin Peptides Act as Decoy Receptors for Listeria monocytogenes. Infection and Immunity, 2003, 71, 1580-1583.	1.0	19
59	Novel germlineCDH1mutations in hereditary diffuse gastric cancer families. Human Mutation, 2002, 19, 518-525.	1.1	63
60	Association of CDH1 haplotypes with susceptibility to sporadic diffuse gastric cancer. Oncogene, 2002, 21, 8192-8195.	2.6	91
61	Gastric Cancer: Inherited Predisposition. , 2002, , 253-258.		0
62	Incidence of gastric cancer and breast cancer in CDH1 (E-cadherin) mutation carriers from hereditary diffuse gastric cancer families. Gastroenterology, 2001, 121, 1348-1353.	0.6	579
63	Germline E-cadherin gene mutations. Cancer, 2001, 92, 181-187.	2.0	131
64	Hereditary diffuse gastric cancer. Advances in Cancer Research, 2001, 83, 55-65.	1.9	35
65	Methylation of the CDH1 promoter as the second genetic hit in hereditary diffuse gastric cancer. Nature Genetics, 2000, 26, 16-17.	9.4	420
66	E-cadherin downregulation in cancer: fuel on the fire?. Trends in Molecular Medicine, 1999, 5, 172-177.	2.6	104
67	E-cadherin germline mutations define an inherited cancer syndrome dominated by diffuse gastric cancer. Human Mutation, 1999, 14, 249-255.	1.1	247
68	E-cadherin unlikely to be a common ?low penetrance? gene for colorectal cancer. American Journal of Medical Genetics Part A, 1999, 84, 169-171.	2.4	3
69	E-cadherin germline mutations in familial gastric cancer. Nature, 1998, 392, 402-405.	13.7	1,542
70	Sequence Characterization of a Newly Identified Human α-Tubulin Gene (TUBA2). Genomics, 1998, 47, 125-130.	1.3	6
71	Defective myosin VIIA gene responsible for Usher syndrome type IB. Nature, 1995, 374, 60-61.	13.7	1,101
72	A YAC Contig and an EST Map in the Pericentromeric Region of Chromosome 13 Surrounding the Loci for Neurosensory Nonsyndromic Deafness (DFNB1 and DFNA3) and Limb-Girdle Muscular Dystrophy Type 2C (LGMD2C). Genomics, 1995, 29, 163-169.	1.3	25

#	Article	IF	CITATIONS
73	A gene responsible for a dominant form of neurosensory non-syndromic deafness maps to the NSRD1 recessive deafness gene interval. Human Molecular Genetics, 1994, 3, 2219-2222.	1.4	93
74	A non–syndromic form of neurosensory, recessive deafness maps to the pericentromeric region of chromosome 13q. Nature Genetics, 1994, 6, 24-28.	9.4	262
75	A human gene responsible for neurosensory, non-syndromic recessive deafness is a candidate homologue of the mouse sh-1 gene. Human Molecular Genetics, 1994, 3, 989-993.	1.4	134
76	Mutation and replacement of the 16-kDa protein gene IN RNA-1 of tobacco rattle virus. Virology, 1991, 182, 607-614.	1.1	16
77	Triple gene block proteins of white clover mosaic potexvirus are required for transport. Virology, 1991, 183, 695-702.	1.1	200
78	Organization and interviral homologies of the coat protein gene of white clover mosaic virus. Virology, 1988, 162, 459-465.	1.1	17