
Rajash K Handa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5867707/publications.pdf Version: 2024-02-01

PAIACH K HANDA

#	Article	IF	CITATIONS
1	In Vivo Renal Tubule pH in Stone-Forming Human Kidneys. Journal of Endourology, 2020, 34, 203-208.	1.1	2
2	Preliminary Report on Stone Breakage and Lesion Size Produced by a New Extracorporeal Electrohydraulic (Sparker Array) Discharge Device. Urology, 2018, 116, 213-217.	0.5	3
3	Development of a novel magnetic resonance imaging acquisition and analysis workflow for the quantification of shock wave lithotripsy-induced renal hemorrhagic injury. Urolithiasis, 2017, 45, 507-513.	1.2	10
4	Using 300 Pretreatment Shock Waves in a Voltage Ramping Protocol Can Significantly Reduce Tissue Injury During Extracorporeal Shock Wave Lithotripsy. Journal of Endourology, 2016, 30, 1004-1008.	1.1	20
5	Intraluminal measurement of papillary duct urine pH, in vivo: a pilot study in the swine kidney. Urolithiasis, 2016, 44, 211-217.	1.2	6
6	Percutaneous Renal Access: Surgical Factors Involved in the Acute Reduction of Renal Function. Journal of Endourology, 2016, 30, 178-183.	1.1	5
7	Shock Wave Lithotripsy Does Not Impair Renal Function in a Swine Model of Metabolic Syndrome. Journal of Endourology, 2015, 29, 468-473.	1.1	6
8	Mechanism by which shock wave lithotripsy can promote formation of human calcium phosphate stones. American Journal of Physiology - Renal Physiology, 2015, 308, F938-F949.	1.3	14
9	Effect of Renal Shock Wave Lithotripsy on the Development of Metabolic Syndrome in a Juvenile Swine Model: A Pilot Study. Journal of Urology, 2015, 193, 1409-1416.	0.2	8
10	Shock Wave Lithotripsy Targeting of the Kidney and Pancreas Does Not Increase the Severity of Metabolic Syndrome in a Porcine Model. Journal of Urology, 2014, 192, 1257-1265.	0.2	10
11	Evaluation of the LithoGold LG-380 Lithotripter: <i>In Vitro</i> Acoustic Characterization and Assessment of Renal Injury in the Pig Model. Journal of Endourology, 2013, 27, 631-639.	1.1	19
12	Evaluation of shock wave lithotripsy injury in the pig using a narrow focal zone lithotriptor. BJU International, 2012, 110, 1376-1385.	1.3	22
13	Optimising an escalating shockwave amplitude treatment strategy to protect the kidney from injury during shockwave lithotripsy. BJU International, 2012, 110, E1041-7.	1.3	34
14	A chronic outcome of shock wave lithotripsy is parenchymal fibrosis. Urological Research, 2010, 38, 301-305.	1.5	15
15	Renal functional effects of simultaneous bilateral singleâ€ŧract percutaneous access in pigs. BJU International, 2010, 105, 125-128.	1.3	14
16	Time-Course for Recovery of Renal Function After Unilateral (Single-Tract) Percutaneous Access in the Pig. Journal of Endourology, 2010, 24, 283-288.	1.1	16
17	Renal Functional Effects of Multiple-Tract Percutaneous Access. Journal of Endourology, 2009, 23, 1951-1956.	1.1	34
18	Effect of initial shock wave voltage on shock wave lithotripsyâ€ i nduced lesion size during stepâ€ w ise voltage ramping. BJU International, 2009, 103, 104-107.	1.3	48

Rajash K Handa

#	Article	IF	CITATIONS
19	Localization of renal oxidative stress and inflammatory response after lithotripsy. BJU International, 2009, 103, 1562-1568.	1.3	26
20	Pretreatment with lowâ€energy shock waves induces renal vasoconstriction during standard shock wave lithotripsy (SWL): a treatment protocol known to reduce SWLâ€induced renal injury. BJU International, 2009, 103, 1270-1274.	1.3	64
21	Extracorporeal shock wave lithotripsy at 60 shock waves/min reduces renal injury in a porcine model. BJU International, 2009, 104, 1004-1008.	1.3	45
22	Assessment of Renal Injury With a Clinical Dual Head Lithotriptor Delivering 240 Shock Waves per Minute. Journal of Urology, 2009, 181, 884-889.	0.2	18
23	Effect of Shock Wave Lithotripsy on Renal Hemodynamics. AIP Conference Proceedings, 2008, , .	0.3	1
24	Percutaneous Access: Acute Effects on Renal Function and Structure in a Porcine Model. AIP Conference Proceedings, 2007, , .	0.3	2
25	Dual-head lithotripsy in synchronous mode: acute effect on renal function and morphology in the pig. BJU International, 2007, 99, 1134-1142.	1.3	11
26	1361: Acute Changes in Renal Glomerular Function following PCNL in Patients. Journal of Urology, 2007, 177, 449-449.	0.2	1
27	Reducing Shock Number Dramatically Decreases Lesion Size in a Juvenile Kidney Model. Journal of Endourology, 2006, 20, 607-611.	1.1	34
28	Acute Effects of Percutaneous Tract Dilation on Renal Function and Structure. Journal of Endourology, 2006, 20, 1030-1040.	1.1	52
29	Biphasic actions of angiotensin IV on renal blood flow in the rat. Regulatory Peptides, 2006, 136, 23-29.	1.9	10
30	Prevention of Lithotripsy-Induced Renal Injury by Pretreating Kidneys with Low-Energy Shock Waves. Journal of the American Society of Nephrology: JASN, 2006, 17, 663-673.	3.0	96
31	Role of Nitric Oxide in the Renal and Systemic Vasodilatory Responses to Platelet-Activating Factor in the Rat, in vivo. Kidney and Blood Pressure Research, 2003, 26, 165-175.	0.9	4
32	Platelet-activating factor and solute transport processes in the kidney. American Journal of Physiology - Renal Physiology, 2003, 284, F274-F281.	1.3	3
33	Influence of tissue fixation on the binding of -angiotensin receptor ligands in the rat, mouse and rabbit kidney. Peptides, 2002, 23, 1847-1852.	1.2	1
34	Autoradiographic analysis and regulation of angiotensin receptor subtypes AT ₄ , AT ₁ , and AT _(1—7) in the kidney. American Journal of Physiology - Renal Physiology, 2001, 281, F936-F947.	1.3	17
35	Characterization and Signaling of the AT4 Receptor in Human Proximal Tubule Epithelial (HK-2) Cells. Journal of the American Society of Nephrology: JASN, 2001, 12, 440-449.	3.0	59
36	Binding and signaling of angiotensin-(1–7) in bovine kidney epithelial cells involves the AT4 receptor. Peptides, 2000, 21, 729-736.	1.2	15

Rajash K Handa

#	Article	IF	CITATIONS
37	Metabolism Alters the Selectivity of Angiotensin-(1-7) Receptor Ligands for Angiotensin Receptors. Journal of the American Society of Nephrology: JASN, 2000, 11, 1377-1386.	3.0	36
38	Angiotensin-(1–7) can interact with the rat proximal tubule AT ₄ receptor system. American Journal of Physiology - Renal Physiology, 1999, 277, F75-F83.	1.3	27
39	Angiotensin IV AT4-receptor system in the rat kidney. American Journal of Physiology - Renal Physiology, 1998, 274, F290-F299.	1.3	47