Rben F Pereira

List of Publications by Citations

Source: https://exaly.com/author-pdf/5867662/ruben-f-pereira-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

1,428 31 14 33 h-index g-index citations papers 1,784 5.18 33 5.4 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
31	Development of novel alginate based hydrogel films for wound healing applications. <i>International Journal of Biological Macromolecules</i> , 2013 , 52, 221-30	7.9	236
30	Traditional Therapies for Skin Wound Healing. Advances in Wound Care, 2016, 5, 208-229	4.8	213
29	Advanced biofabrication strategies for skin regeneration and repair. <i>Nanomedicine</i> , 2013 , 8, 603-21	5.6	193
28	3D bioprinting of photocrosslinkable hydrogel constructs. <i>Journal of Applied Polymer Science</i> , 2015 , 132, n/a-n/a	2.9	109
27	Preparation and Characterization of Films Based on Alginate and Aloe Vera. <i>International Journal of Polymer Analysis and Characterization</i> , 2011 , 16, 449-464	1.7	97
26	Cell-instructive pectin hydrogels crosslinked via thiol-norbornene photo-click chemistry for skin tissue engineering. <i>Acta Biomaterialia</i> , 2018 , 66, 282-293	10.8	81
25	3D Photo-Fabrication for Tissue Engineering and Drug Delivery. <i>Engineering</i> , 2015 , 1, 090-112	9.7	80
24	Alginate/Aloe Vera Hydrogel Films for Biomedical Applications. <i>Procedia CIRP</i> , 2013 , 5, 210-215	1.8	69
23	A single-component hydrogel bioink for bioprinting of bioengineered 3D constructs for dermal tissue engineering. <i>Materials Horizons</i> , 2018 , 5, 1100-1111	14.4	66
22	Advances in bioprinted cell-laden hydrogels for skin tissue engineering 2017 , 2, 1		50
21	Influence of Aloe vera on water absorption and enzymatic in vitro degradation of alginate hydrogel films. <i>Carbohydrate Polymers</i> , 2013 , 98, 311-20	10.3	43
20	Collagen surface modified poly(Eaprolactone) scaffolds with improved hydrophilicity and cell adhesion properties. <i>Materials Letters</i> , 2014 , 134, 263-267	3.3	37
19	Engineering the vasculature with additive manufacturing. <i>Current Opinion in Biomedical Engineering</i> , 2017 , 2, 1-13	4.4	36
18	Tissue-specific engineering: 3D bioprinting in regenerative medicine. <i>Journal of Controlled Release</i> , 2021 , 329, 237-256	11.7	17
17	Photopolymerizable hydrogels in regenerative medicine and drug delivery 2014 , 6-28		12
16	Degradation Behavior of Biopolymer-based Membranes for Skin Tissue Regeneration. <i>Procedia Engineering</i> , 2013 , 59, 285-291		11
15	Biological perspectives and current biofabrication strategies in osteochondral tissue engineering 2020 , 5, 1		10

Recent Advances in Additive Biomanufacturing 2014, 265-284 14 9 3D Cell Culture Models as Recapitulators of the Tumor Microenvironment for the Screening of 6.6 13 Anti-Cancer Drugs.. Cancers, 2021, 14, An injectable, dual crosslinkable hybrid pectin methacrylate (PECMA)/gelatin methacryloyl (GelMA) hydrogel for skin hemostasis applications. International Journal of Biological Macromolecules, 2021, 8 12 7.9 185, 441-450 Computer modelling and simulation of a bioreactor for tissue engineering. International Journal of 11 7 4.3 Computer Integrated Manufacturing, 2014, 27, 946-959 Biofabrication of Hydrogel Constructs. Advances in Predictive, Preventive and Personalised Medicine, 10 0.4 7 2013. 225-254 Bioprinting a Multifunctional Bioink to Engineer Clickable 3D Cellular Niches with Tunable Matrix 9 10.1 Microenvironmental Cues. Advanced Healthcare Materials, 2021, 10, e2001176 Polyethylene Glycol and Polyethylene Glycol/Hydroxyapatite Constructs Produced through 8 0.5 5 Stereo-Thermal Lithography. *Advanced Materials Research*, **2013**, 749, 87-92 Engineering Modular Half-Antibody Conjugated Nanoparticles for Targeting CD44v6-Expressing 5 5.4 Cancer Cells. Nanomaterials, 2021, 11, Photocrosslinkable Materials for the Fabrication of Tissue-Engineered Constructs by 6 0.4 4 Stereolithography. Computational Methods in Applied Sciences (Springer), 2014, 149-178 Recent advances on bioprinting of hydrogels containing carbon materials. *Materials Today* 6.2 5 Chemistry, 2022, 23, 100617 Evaluating the Properties of an Alginate Wound Dressing for Skin Repair. Advanced Materials 0.5 2 Research, 2013, 683, 141-144 Vat polymerization techniques for biotechnology and medicine 2013, 203-207 Effect of TCP20 Bioglass addition on the morphological and mechanical properties of 3D Bioextruded poly (_-caprolactone) scaffolds 2013, 199-202 Engineering Natural-Based Photocrosslinkable Hydrogels for Cartilage Applications 2021, 111-138