## Rúben F Pereira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5867662/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Recent advances on bioprinting of hydrogels containing carbon materials. Materials Today Chemistry, 2022, 23, 100617.                                                                                                      | 1.7 | 11        |
| 2  | 3D Cell Culture Models as Recapitulators of the Tumor Microenvironment for the Screening of Anti-Cancer Drugs. Cancers, 2022, 14, 190.                                                                                     | 1.7 | 75        |
| 3  | Fabrication of Polymer/Graphene Biocomposites for Tissue Engineering. Polymers, 2022, 14, 1038.                                                                                                                            | 2.0 | 8         |
| 4  | Thiol–Norbornene Photoclick Chemistry for Grafting Antimicrobial Peptides onto Chitosan to Create<br>Antibacterial Biomaterials. ACS Applied Polymer Materials, 2022, 4, 5012-5026.                                        | 2.0 | 9         |
| 5  | Bioprinting a Multifunctional Bioink to Engineer Clickable 3D Cellular Niches with Tunable Matrix<br>Microenvironmental Cues. Advanced Healthcare Materials, 2021, 10, e2001176.                                           | 3.9 | 16        |
| 6  | Tissue-specific engineering: 3D bioprinting in regenerative medicine. Journal of Controlled Release, 2021, 329, 237-256.                                                                                                   | 4.8 | 45        |
| 7  | Engineering Natural-Based Photocrosslinkable Hydrogels for Cartilage Applications. , 2021, , 111-138.                                                                                                                      |     | 0         |
| 8  | Engineering Modular Half-Antibody Conjugated Nanoparticles for Targeting CD44v6-Expressing Cancer Cells. Nanomaterials, 2021, 11, 295.                                                                                     | 1.9 | 11        |
| 9  | An injectable, dual crosslinkable hybrid pectin methacrylate (PECMA)/gelatin methacryloyl (GelMA)<br>hydrogel for skin hemostasis applications. International Journal of Biological Macromolecules, 2021,<br>185, 441-450. | 3.6 | 46        |
| 10 | Biological perspectives and current biofabrication strategies in osteochondral tissue engineering.<br>Biomanufacturing Reviews, 2020, 5, 1.                                                                                | 4.8 | 22        |
| 11 | Cell-instructive pectin hydrogels crosslinked via thiol-norbornene photo-click chemistry for skin<br>tissue engineering. Acta Biomaterialia, 2018, 66, 282-293.                                                            | 4.1 | 133       |
| 12 | A single-component hydrogel bioink for bioprinting of bioengineered 3D constructs for dermal tissue engineering. Materials Horizons, 2018, 5, 1100-1111.                                                                   | 6.4 | 104       |
| 13 | Engineering the vasculature with additive manufacturing. Current Opinion in Biomedical Engineering, 2017, 2, 1-13.                                                                                                         | 1.8 | 46        |
| 14 | Advances in bioprinted cell-laden hydrogels for skin tissue engineering. Biomanufacturing Reviews, 2017, 2, 1.                                                                                                             | 4.8 | 72        |
| 15 | Traditional Therapies for Skin Wound Healing. Advances in Wound Care, 2016, 5, 208-229.                                                                                                                                    | 2.6 | 323       |
| 16 | 3D Photo-Fabrication for Tissue Engineering and Drug Delivery. Engineering, 2015, 1, 090-112.                                                                                                                              | 3.2 | 105       |
| 17 | 3D bioprinting of photocrosslinkable hydrogel constructs. Journal of Applied Polymer Science, 2015, 132, .                                                                                                                 | 1.3 | 160       |
|    |                                                                                                                                                                                                                            |     |           |

18 Recent Advances in Additive Biomanufacturing. , 2014, , 265-284.

Rúben F Pereira

| #  | Article                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Photocrosslinkable Materials for the Fabrication of Tissue-Engineered Constructs by Stereolithography. Computational Methods in Applied Sciences (Springer), 2014, , 149-178. | 0.1 | 5         |
| 20 | Computer modelling and simulation of a bioreactor for tissue engineering. International Journal of<br>Computer Integrated Manufacturing, 2014, 27, 946-959.                   | 2.9 | 7         |
| 21 | Collagen surface modified poly(lµ-caprolactone) scaffolds with improved hydrophilicity and cell adhesion properties. Materials Letters, 2014, 134, 263-267.                   | 1.3 | 58        |
| 22 | Degradation Behavior of Biopolymer-based Membranes for Skin Tissue Regeneration. Procedia<br>Engineering, 2013, 59, 285-291.                                                  | 1.2 | 15        |
| 23 | Influence of Aloe vera on water absorption and enzymatic in vitro degradation of alginate hydrogel films. Carbohydrate Polymers, 2013, 98, 311-320.                           | 5.1 | 63        |
| 24 | Alginate/Aloe Vera Hydrogel Films for Biomedical Applications. Procedia CIRP, 2013, 5, 210-215.                                                                               | 1.0 | 105       |
| 25 | Advanced biofabrication strategies for skin regeneration and repair. Nanomedicine, 2013, 8, 603-621.                                                                          | 1.7 | 247       |
| 26 | Biofabrication of Hydrogel Constructs. Advances in Predictive, Preventive and Personalised Medicine, 2013, , 225-254.                                                         | 0.6 | 7         |
| 27 | Development of novel alginate based hydrogel films for wound healing applications. International<br>Journal of Biological Macromolecules, 2013, 52, 221-230.                  | 3.6 | 325       |
| 28 | Vat polymerization techniques for biotechnology and medicine. , 2013, , 203-207.                                                                                              |     | 3         |
| 29 | Preparation and Characterization of Films Based on Alginate and Aloe Vera. International Journal of<br>Polymer Analysis and Characterization, 2011, 16, 449-464.              | 0.9 | 165       |
| 30 | Evaluating the Properties of an Alginate Wound Dressing for Skin Repair. Advanced Materials<br>Research, 0, 683, 141-144.                                                     | 0.3 | 4         |
| 31 | Polyethylene Glycol and Polyethylene Glycol/Hydroxyapatite Constructs Produced through<br>Stereo-Thermal Lithography. Advanced Materials Research, 0, 749, 87-92.             | 0.3 | 7         |