Thomas Brunschwiler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5867194/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Privacy preserving synthetic respiratory sounds for class incremental learning. Smart Health, 2022, 23, 100232.	3.2	0
2	Multisensory Home-Monitoring in Individuals With Stable Chronic Obstructive Pulmonary Disease and Asthma: Usability Study of the CAir-Desk. JMIR Human Factors, 2022, 9, e31448.	2.0	4
3	Three influential factors on colloidal nanoparticle deposition for heat conduction enhancement in 3D chip stacks. Applied Thermal Engineering, 2021, 187, 116585.	6.0	4
4	Experimental Efficiency Evaluation of Stacked Transistor Half-Bridge Topologies in 14 nm CMOS Technology. Electronics (Switzerland), 2021, 10, 1150.	3.1	1
5	An Unsupervised Behavioral Modeling and Alerting System Based on Passive Sensing for Elderly Care. Future Internet, 2021, 13, 6.	3.8	21
6	Electrical and Thermal Characterization of an Inductor-Based ANPC-Type Buck Converter in 14 nm CMOS Technology for Microprocessor Applications. IEEE Open Journal of Power Electronics, 2020, 1, 456-468.	5.7	5
7	Controlled 3D nanoparticle deposition by drying of colloidal suspension in designed thin micro-porous architectures. International Journal of Heat and Mass Transfer, 2020, 158, 120000.	4.8	23
8	A Telemonitoring and Hybrid Virtual Coaching Solution "CAir―for Patients with Chronic Obstructive Pulmonary Disease: Protocol for a Randomized Controlled Trial. JMIR Research Protocols, 2020, 9, e20412.	1.0	6
9	Oxide-Free Copper Pastes for the Attachment of Large-Area Power Devices. Journal of Electronic Materials, 2019, 48, 6823-6834.	2.2	19
10	IoT-Based Home Monitoring: Supporting Practitioners' Assessment by Behavioral Analysis. Sensors, 2019, 19, 3238.	3.8	23
11	Low-Temperature Dip-Based All-Copper Interconnects Formed by Pressure-Assisted Sintering of Copper Nanoparticles. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2019, 9, 1613-1622.	2.5	16
12	Study of non-isothermal liquid evaporation in synthetic micro-pore structures with hybrid lattice Boltzmann model. Journal of Fluid Mechanics, 2019, 866, 33-60.	3.4	53
13	Nocturnal Cough and Snore Detection in Noisy Environments Using Smartphone-Microphones. , 2019, , .		39
14	Thermally Conductive Composite Material With Percolating Microparticles Applied as Underfill. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2018, 8, 840-850.	2.5	4
15	On the Evaporation of Colloidal Suspensions in Confined Pillar Arrays. Transport in Porous Media, 2018, 125, 173-192.	2.6	3
16	Enhanced Percolating Thermal Underfills Achieved by Means of Nanoparticle Bridging Necks. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2016, 6, 1785-1795.	2.5	8
17	Review on Percolating and Neck-Based Underfills for Three-Dimensional Chip Stacks. Journal of Electronic Packaging, Transactions of the ASME, 2016, 138, .	1.8	13
18	All-Copper Flip Chip Interconnects by Pressureless and Low Temperature Nanoparticle Sintering. , 2016,		15

#	Article	IF	CITATIONS
19	Steady-state low thermal resistance characterization apparatus: The bulk thermal tester. Review of Scientific Instruments, 2015, 86, 124903.	1.3	13
20	In Situ Assembly in Confined Spaces of Coated Particle Scaffolds as Thermal Underfills with Extraordinary Thermal Conductivity. ACS Applied Materials & Interfaces, 2015, 7, 838-844.	8.0	4
21	A novel method of energy efficient hotspot-targeted embedded liquid cooling for electronics: An experimental study. International Journal of Heat and Mass Transfer, 2015, 88, 684-694.	4.8	91
22	Nanoparticle assembly and sintering towards all-copper flip chip interconnects. , 2015, , .		25
23	Energy efficient hotspot-targeted embedded liquid cooling of electronics. Applied Energy, 2015, 138, 414-422.	10.1	157
24	Computational Modeling of Hot-Spot Identification and Control in 3-D Stacked Chips with Integrated Cooling. Numerical Heat Transfer; Part A: Applications, 2014, 65, 201-215.	2.1	12
25	Enhanced Electrical and Thermal Interconnects by the Self-Assembly of Nanoparticle Necks Utilizing Capillary Bridging. Journal of Electronic Packaging, Transactions of the ASME, 2014, 136, .	1.8	6
26	Microvortex-enhanced heat transfer in 3D-integrated liquid cooling of electronic chip stacks. International Journal of Heat and Mass Transfer, 2013, 65, 33-43.	4.8	62
27	Vortex shedding from confined micropin arrays. Microfluidics and Nanofluidics, 2013, 15, 231-242.	2.2	19
28	Computational modeling of vortex shedding in water cooling of 3D integrated electronics. International Journal of Heat and Fluid Flow, 2013, 44, 745-755.	2.4	27
29	On the significance of developing boundary layers in integrated water cooled 3D chip stacks. International Journal of Heat and Mass Transfer, 2012, 55, 5222-5232.	4.8	17
30	Formulation of Percolating Thermal Underfills Using Hierarchical Self-Assembly of Microparticles and Nanoparticles by Centrifugal Forces and Capillary Bridging. Journal of Microelectronics and Electronic Packaging, 2012, 9, 149-159.	0.7	21
31	Experimental investigation into vortex structure and pressure drop across microcavities in 3D integrated electronics. Experiments in Fluids, 2011, 51, 731-741.	2.4	51
32	3D Integrated Water Cooling of a Composite Multilayer Stack of Chips. Journal of Heat Transfer, 2010, 132, .	2.1	54
33	Interlayer cooling potential in vertically integrated packages. Microsystem Technologies, 2009, 15, 57-74.	2.0	154