Gorkem Kulah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5867163/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermal stability and SO ₂ resistance of Pd/Rh-perovskite based three-way catalyst wash-coated on cordierite monoliths. Chemical Engineering Communications, 2023, 210, 205-222.	2.6	2
2	Performance and validation of a radiation model coupled with a transient bubbling fluidized bed combustion model. International Journal of Thermal Sciences, 2022, 176, 107496.	4.9	3
3	Gas velocity distribution in conical spouted beds with highâ€density particles. Canadian Journal of Chemical Engineering, 2021, 99, 1607-1615.	1.7	4
4	Influence of soot on radiative heat transfer in bubbling fluidized bed combustors. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 270, 107711.	2.3	0
5	Influence of bag filter ash to spectral thermal radiation in fluidized bed combustors co-fired with biomass. International Journal of Thermal Sciences, 2021, 167, 107012.	4.9	1
6	Performance of banded SLW-1 in presence of non-gray walls and particles in fluidized bed combustors. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 257, 107370.	2.3	5
7	Assessment of improved banded model for spectral thermal radiation in presence of non-gray particles in fluidized bed combustors. Applied Thermal Engineering, 2020, 176, 115322.	6.0	12
8	Effect of kaolin addition on alkali capture capability during combustion of olive residue. Combustion Science and Technology, 2019, 191, 43-53.	2.3	9
9	Comment on "Deciphering conical spouted bed hydrodynamics using high intensity microphoneâ€. Nuclear Engineering and Design, 2019, 353, 110242.	1.7	0
10	Modeling of Fluidized Bed Combustion of Lignite with High Nitrogen Content Cotton Residue. Combustion Science and Technology, 2019, , 1-14.	2.3	1
11	Detecting stability of conical spouted beds based on information entropy theory. Powder Technology, 2019, 343, 185-193.	4.2	15
12	Assessment of SLW-1 model in the presence of gray and non-gray particles. International Journal of Thermal Sciences, 2019, 136, 420-432.	4.9	7
13	Surface-to-bed heat transfer for high-density particles in conical spouted and spout–fluid beds. Particuology, 2019, 42, 35-47.	3.6	12
14	Effect of limestone addition on radiative heat transfer during co-firing of high-sulfur content lignite with biomass in fluidized bed combustors. Combustion Science and Technology, 2018, 190, 1377-1391.	2.3	2
15	A new correlation for minimum spouting velocity for conical spouted beds operating with high density particles. Experimental Thermal and Fluid Science, 2018, 96, 358-370.	2.7	23
16	Assessment of gas radiative property models in the presence of nongray particles. Numerical Heat Transfer; Part A: Applications, 2018, 73, 385-407.	2.1	14
17	Effect of changing biomass source on radiative heat transfer during co-firing of high-sulfur content lignite in fluidized bed combustors. Applied Thermal Engineering, 2018, 128, 539-550.	6.0	6
18	Significance of particle concentration distribution on radiative heat transfer in circulating fluidized bed combustors. International Journal of Heat and Mass Transfer, 2018, 117, 58-70.	4.8	18

GORKEM KULAH

#	Article	IF	CITATIONS
19	Influence of gray particle assumption on the predictive accuracy of gas property approximations. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 220, 67-83.	2.3	8
20	Influence of fly ash composition on non-gray particle radiation in combusting systems. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 215, 25-40.	2.3	18
21	Monitoring of liquid sprayed conical spouted beds by recurrence plots. Powder Technology, 2017, 316, 148-156.	4.2	16
22	Benchmarking grey particle approximations against nongrey particle radiation in circulating fluidized bed combustors. Numerical Heat Transfer, Part B: Fundamentals, 2017, 71, 467-484.	0.9	8
23	CFD-DEM Simulation of a Conical Spouted Bed Operating with High Density Particles. Springer Proceedings in Physics, 2017, , 947-955.	0.2	3
24	Influence of spectral particle properties on radiative heat transfer in optically thin and thick media of fluidized bed combustors. International Journal of Thermal Sciences, 2017, 122, 266-280.	4.9	18
25	Radiative heat transfer in strongly forward scattering media of circulating fluidized bed combustors. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 182, 264-276.	2.3	23
26	Early Detection of Agglomeration in Conical Spouted Beds Using Recurrence Plots. Industrial & Engineering Chemistry Research, 2016, 55, 7179-7190.	3.7	17
27	Particle Velocity, Solids Hold-Up, and Solids Flux Distributions in Conical Spouted Beds Operating with Heavy Particles. Industrial & Engineering Chemistry Research, 2016, 55, 3131-3138.	3.7	19
28	CFD Simulations of Hydrodynamics of Conical Spouted Bed Nuclear Fuel Coaters. Chemical Vapor Deposition, 2015, 21, 122-132.	1.3	14
29	Flow structure characterization in conical spouted beds using pressure fluctuation signals. Powder Technology, 2015, 269, 392-400.	4.2	34
30	Comparison Between Combustion Behavior of Solid Fuels and Their Chars Under Oxy-Fuel Conditions. Combustion Science and Technology, 2014, 186, 398-408.	2.3	6
31	Characterization of gas–solid flow in conical spouted beds operating with heavy particles. Experimental Thermal and Fluid Science, 2012, 40, 132-139.	2.7	29
32	Investigation and scale-up of hot-melt coating of pharmaceuticals in fluidized beds. Powder Technology, 2011, 208, 175-184.	4.2	15
33	Design assessment of a 150kWt CFBC Test Unit. Experimental Thermal and Fluid Science, 2010, 34, 275-281.	2.7	4
34	Validation of a FBC model for co-firing of hazelnut shell with lignite against experimental data. Experimental Thermal and Fluid Science, 2010, 34, 646-655.	2.7	9
35	Mathematical Modeling of a Bubbling Fluidized Bed Combustor Cofired with Lignite and Biomass. Combustion Science and Technology, 2010, 182, 600-612.	2.3	4
36	A Comprehensive Fluidized Bed Combustion Model Coupled with a Radiation Model. Combustion Science and Technology, 2008, 180, 910-926.	2.3	9

#	Article	IF	CITATIONS
37	Flow structure and thickness of annular downflow layer in a circulating fluidized bed riser. Powder Technology, 2004, 142, 48-58.	4.2	38
38	Flow behavior and regime transition in a high-density circulating fluidized bed riser. Chemical Engineering Science, 2004, 59, 3955-3963.	3.8	81