David H Cobden

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5867157/david-h-cobden-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

50	14,226	39	55
papers	citations	h-index	g-index
55 ext. papers	17,159 ext. citations	2 O .2 avg, IF	6.3 L-index

#	Paper	IF	Citations
50	Electric control of a canted-antiferromagnetic Chern insulator <i>Nature Communications</i> , 2022 , 13, 1668	17.4	4
49	Evidence for equilibrium exciton condensation in monolayer WTe2. <i>Nature Physics</i> , 2022 , 18, 94-99	16.2	4
48	Unraveling Strain Gradient Induced Electromechanical Coupling in Twisted Double Bilayer Graphene Moir Buperlattices. <i>Advanced Materials</i> , 2021 , 33, e2105879	24	7
47	Electrically tunable correlated and topological states in twisted monolayer B ilayer graphene. <i>Nature Physics</i> , 2021 , 17, 374-380	16.2	64
46	Terahertz response of monolayer and few-layer WTe at the nanoscale. <i>Nature Communications</i> , 2021 , 12, 5594	17.4	8
45	Magnetic proximity and nonreciprocal current switching in a monolayer WTe helical edge. <i>Nature Materials</i> , 2020 , 19, 503-507	27	32
44	Voltage Control of a van der Waals Spin-Filter Magnetic Tunnel Junction. <i>Nano Letters</i> , 2019 , 19, 915-92	2 0 1.5	80
43	Atomically Thin CrCl: An In-Plane Layered Antiferromagnetic Insulator. <i>Nano Letters</i> , 2019 , 19, 3993-399	98 1.5	120
42	Imaging quantum spin Hall edges in monolayer WTe. <i>Science Advances</i> , 2019 , 5, eaat8799	14.3	64
41	Visualizing electrostatic gating effects in two-dimensional heterostructures. <i>Nature</i> , 2019 , 572, 220-223	3 50.4	71
40	Switching 2D magnetic states via pressure tuning of layer stacking. <i>Nature Materials</i> , 2019 , 18, 1298-13	0 2 7	194
39	Electrical control of 2D magnetism in bilayer Crl. <i>Nature Nanotechnology</i> , 2018 , 13, 544-548	28.7	626
38	Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. <i>Science</i> , 2018 , 360, 1214-1218	33.3	555
37	Ferroelectric switching of a two-dimensional metal. <i>Nature</i> , 2018 , 560, 336-339	50.4	280
36	Two-dimensional itinerant ferromagnetism in atomically thin FeGeTe. <i>Nature Materials</i> , 2018 , 17, 778-7	8 2 7	522
35	Ligand-field helical luminescence in a 2D ferromagnetic insulator. <i>Nature Physics</i> , 2018 , 14, 277-281	16.2	192
34	Gate-induced superconductivity in a monolayer topological insulator. <i>Science</i> , 2018 , 362, 922-925	33.3	143

(2012-2017)

33	Many-body effects in nonlinear optical responses of 2D layered semiconductors. <i>2D Materials</i> , 2017 , 4, 025024	5.9	28
32	Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures. <i>Science Advances</i> , 2017 , 3, e1601832	14.3	208
31	Edge conduction in monolayer WTe2. <i>Nature Physics</i> , 2017 , 13, 677-682	16.2	320
30	Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. <i>Nature</i> , 2017 , 546, 270-273	50.4	2210
29	Interlayer Exciton Optoelectronics in a 2D Heterostructure p-n Junction. <i>Nano Letters</i> , 2017 , 17, 638-64	13 11.5	193
28	Photo-Nernst current in graphene. <i>Nature Physics</i> , 2016 , 12, 236-239	16.2	15
27	Ultrafast Nanoimaging of the Photoinduced Phase Transition Dynamics in VO2. <i>Nano Letters</i> , 2016 , 16, 3029-35	11.5	67
26	Inhomogeneity of the ultrafast insulator-to-metal transition dynamics of VO2. <i>Nature Communications</i> , 2015 , 6, 6849	17.4	108
25	Surface electron perturbations and the collective behaviour of atoms adsorbed on a cylinder. <i>Nature Physics</i> , 2015 , 11, 398-402	16.2	5
24	Magnetic control of valley pseudospin in monolayer WSe2. <i>Nature Physics</i> , 2015 , 11, 148-152	16.2	529
23	Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. <i>Nature Nanotechnology</i> , 2014 , 9, 268-72	28.7	1202
22	Lateral heterojunctions within monolayer MoSe2-WSe2 semiconductors. <i>Nature Materials</i> , 2014 , 13, 10	96 / 101	732
21	Vapor-transport growth of high optical quality WSe2 monolayers a. APL Materials, 2014, 2, 101101	5.7	48
20	Measurement of a solid-state triple point at the metal-insulator transition in VO2. <i>Nature</i> , 2013 , 500, 431-4	50.4	328
19	Metal contacts on physical vapor deposited monolayer MoS2. ACS Nano, 2013, 7, 11350-7	16.7	233
18	Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2. <i>Nature Physics</i> , 2013 , 9, 149-153	16.2	451
17	Vapor-solid growth of high optical quality MoSImonolayers with near-unity valley polarization. <i>ACS Nano</i> , 2013 , 7, 2768-72	16.7	340
16	Kr and 4He Adsorption on Individual Suspended Single-Walled Carbon Nanotubes. <i>Journal of Low Temperature Physics</i> , 2012 , 169, 338-349	1.3	11

15	Photoresponse of a strongly correlated material determined by scanning photocurrent microscopy. <i>Nature Nanotechnology</i> , 2012 , 7, 723-7	28.7	58
14	Ultrafast hot-carrier-dominated photocurrent in graphene. <i>Nature Nanotechnology</i> , 2012 , 7, 114-8	28.7	312
13	Nano-optical investigations of the metal-insulator phase behavior of individual VO(2) microcrystals. <i>Nano Letters</i> , 2010 , 10, 1574-81	11.5	204
12	New aspects of the metal-insulator transition in single-domain vanadium dioxide nanobeams. <i>Nature Nanotechnology</i> , 2009 , 4, 420-4	28.7	255
11	Tip-modulation scanned gate microscopy. <i>Nano Letters</i> , 2008 , 8, 2161-5	11.5	19
10	Oriented growth of single-wall carbon nanotubes using alumina patterns. <i>Nanotechnology</i> , 2004 , 15, 473-476	3.4	11
9	Shell filling in closed single-wall carbon nanotube quantum dots. <i>Physical Review Letters</i> , 2002 , 89, 0468	3 9 34	143
8	Single-Wall Carbon Nanotube Conducting Probe Tips. Journal of Physical Chemistry B, 2002, 106, 13102-	1334105	46
7	Quantum dots in suspended single-wall carbon nanotubes. <i>Applied Physics Letters</i> , 2001 , 79, 4216-4218	3.4	63
6	Fluctuations and Evidence for Charging in the Quantum Hall Effect. <i>Physical Review Letters</i> , 1999 , 82, 4695-4698	7.4	60
5	One dimensional transport in carbon nanotubes. <i>Microelectronic Engineering</i> , 1999 , 47, 417-420	2.5	17
4	Luttinger-liquid behaviour in carbon nanotubes. <i>Nature</i> , 1999 , 397, 598-601	50.4	1242
3	Disorder, Pseudospins, and Backscattering in Carbon Nanotubes. <i>Physical Review Letters</i> , 1999 , 83, 5098	3 -5 401	371
2	Spin Splitting and Even-Odd Effects in Carbon Nanotubes. <i>Physical Review Letters</i> , 1998 , 81, 681-684	7.4	194
1	Single-Electron Transport in Ropes of Carbon Nanotubes. <i>Science</i> , 1997 , 275, 1922-5	33.3	1158