Shaohua Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/586697/publications.pdf Version: 2024-02-01

<u> Снаониа М/п</u>

#	Article	IF	CITATIONS
1	Living nanofiber yarn-based woven biotextiles for tendon tissue engineering using cell tri-culture and mechanical stimulation. Acta Biomaterialia, 2017, 62, 102-115.	4.1	147
2	State-of-the-Art Review of Electrospun Gelatin-Based Nanofiber Dressings for Wound Healing Applications. Nanomaterials, 2022, 12, 784.	1.9	118
3	Flexible and conductive nanofiber-structured single yarn sensor for smart wearable devices. Sensors and Actuators B: Chemical, 2017, 252, 697-705.	4.0	104
4	Fabrication of Aligned Nanofiber Polymer Yarn Networks for Anisotropic Soft Tissue Scaffolds. ACS Applied Materials & Interfaces, 2016, 8, 16950-16960.	4.0	102
5	Three-dimensional hyaluronic acid hydrogel-based models for in vitro human iPSC-derived NPC culture and differentiation. Journal of Materials Chemistry B, 2017, 5, 3870-3878.	2.9	95
6	Prevascularization of 3D printed bone scaffolds by bioactive hydrogels and cell coâ€culture. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 1788-1798.	1.6	94
7	Living nano-micro fibrous woven fabric/hydrogel composite scaffolds for heart valve engineering. Acta Biomaterialia, 2017, 51, 89-100.	4.1	81
8	3D printed composite scaffolds with dual small molecule delivery for mandibular bone regeneration. Biofabrication, 2020, 12, 035020.	3.7	77
9	3D printing of silk fibroin-based hybrid scaffold treated with platelet rich plasma for bone tissue engineering. Bioactive Materials, 2019, 4, 256-260.	8.6	76
10	Electrospun thymosin Beta-4 loaded PLGA/PLA nanofiber/ microfiber hybrid yarns for tendon tissue engineering application. Materials Science and Engineering C, 2020, 106, 110268.	3.8	75
11	State-of-the-art review of advanced electrospun nanofiber yarn-based textiles for biomedical applications. Applied Materials Today, 2022, 27, 101473.	2.3	66
12	The structure and properties of cellulose acetate materials: A comparative study on electrospun membranes and casted films. Journal of Industrial Textiles, 2014, 44, 85-98.	1.1	65
13	Electrospun strong, bioactive, and bioabsorbable silk fibroin/poly (L-lactic-acid) nanoyarns for constructing advanced nanotextile tissue scaffolds. Materials Today Bio, 2022, 14, 100243.	2.6	62
14	Effect of scaffold morphology and cell co-culture on tenogenic differentiation of HADMSC on centrifugal melt electrospun poly (Lâ€ʿlactic acid) fibrous meshes. Biofabrication, 2017, 9, 044106.	3.7	61
15	3D printing of multilayered scaffolds for rotator cuff tendon regeneration. Bioactive Materials, 2020, 5, 636-643.	8.6	60
16	Short-term hypoxic preconditioning promotes prevascularization in 3D bioprinted bone constructs with stromal vascular fraction derived cells. RSC Advances, 2017, 7, 29312-29320.	1.7	57
17	Electrospun conductive nanofiber yarns for accelerating mesenchymal stem cells differentiation and maturation into Schwann cell-like cells under a combination of electrical stimulation and chemical induction. Acta Biomaterialia, 2022, 139, 91-104.	4.1	56
18	Electrospun ZnO-loaded chitosan/PCL bilayer membranes with spatially designed structure for accelerated wound healing. Carbohydrate Polymers, 2022, 282, 119131.	5.1	52

Shaohua Wu

#	Article	IF	CITATIONS
19	Establishment of a Human iPSC- and Nanofiber-Based Microphysiological Blood–Brain Barrier System. ACS Applied Materials & Interfaces, 2018, 10, 21825-21835.	4.0	48
20	Mechanical and antibacterial properties of tannic acid-encapsulated carboxymethyl chitosan/polyvinyl alcohol hydrogels. Engineered Regeneration, 2021, 2, 57-62.	3.0	46
21	Mechanically robust cryogels with injectability and bioprinting supportability for adipose tissue engineering. Acta Biomaterialia, 2018, 74, 131-142.	4.1	45
22	Effects of tunable, 3D-bioprinted hydrogels on human brown adipocyte behavior and metabolic function. Acta Biomaterialia, 2018, 71, 486-495.	4.1	38
23	Review of advances in electrospinning-based strategies for spinal cord regeneration. Materials Today Chemistry, 2022, 24, 100944.	1.7	36
24	Novel bi-layered dressing patches constructed with radially-oriented nanofibrous pattern and herbal compound-loaded hydrogel for accelerated diabetic wound healing. Applied Materials Today, 2022, 28, 101542.	2.3	36
25	Novel Poly(butylene fumarate) and Poly(butylene succinate) Multiblock Copolymers Bearing Reactive Carbon–Carbon Double Bonds: Synthesis, Characterization, Cocrystallization, and Properties. Industrial & Engineering Chemistry Research, 2013, 52, 6147-6155.	1.8	34
26	Combining electrospinning with hot drawing process to fabricate high performance poly (L-lactic) Tj ETQq0 0 () rgBT /Ovei 3.7	rloc <u>k</u> 10 Tf 50
27	A facile and versatile strategy to efficiently synthesize sulfonated poly(butylene succinate), self-assembly behavior and biocompatibility. Polymer Chemistry, 2015, 6, 1495-1501.	1.9	27
28	Nondestructive Strategy to Effectively Enhance the Interfacial Adhesion of PBO/Epoxy Composites. ACS Applied Materials & Interfaces, 2020, 12, 45383-45393.	4.0	26
29	Tendon-bioinspired wavy nanofibrous scaffolds provide tunable anisotropy and promote tenogenesis for tendon tissue engineering. Materials Science and Engineering C, 2021, 126, 112181.	3.8	26
30	Ultra-low dielectric constant fluorinated graphene/polybenzoxazole composite films with excellent thermal stabilities and mechanical properties. Composites Part A: Applied Science and Manufacturing, 2021, 145, 106387.	3.8	23
31	Guiding Mesenchymal Stem Cells into Myelinating Schwann Cell-Like Phenotypes by Using Electrospun Core–Sheath Nanoyarns. ACS Biomaterials Science and Engineering, 2019, 5, 5284-5294.	2.6	20
32	Developing high strength poly(L-lactic acid) nanofiber yarns for biomedical textile materials: A comparative study of novel nanofiber yarns and traditional microfiber yarns. Materials Letters, 2021, 300, 130229.	1.3	20
33	Tri‣ayered and Gel‣ike Nanofibrous Scaffolds with Anisotropic Features for Engineering Heart Valve Leaflets. Advanced Healthcare Materials, 2022, 11, e2200053.	3.9	19
34	Preparation and antimicrobial activity of sulfopropyl chitosan in an ionic liquid aqueous solution. Journal of Applied Polymer Science, 2017, 134, .	1.3	18
35	Electrospun Methacrylated Gelatin/Poly(L-Lactic Acid) Nanofibrous Hydrogel Scaffolds for Potential Wound Dressing Application. Nanomaterials, 2022, 12, 6.	1.9	17
36	Grafted copolymer micelles with pH triggered charge reversibility for efficient doxorubicin delivery. Journal of Polymer Science Part A, 2017, 55, 2036-2046.	2.5	16

Shaohua Wu

#	Article	IF	CITATIONS
37	Nanofiber-structured hydrogel yarns with pH-response capacity and cardiomyocyte-drivability for bio-microactuator application. Acta Biomaterialia, 2017, 60, 144-153.	4.1	16
38	Mannose modified zwitterionic polyester-conjugated second near-infrared organic fluorophore for targeted photothermal therapy. Biomaterials Science, 2021, 9, 4648-4661.	2.6	14
39	Electrospun hybrid nanofibrous meshes with adjustable performance for potential use in soft tissue engineering. Textile Reseach Journal, 2022, 92, 1537-1549.	1.1	10
40	Efficient synthesis of ionic triblock copolyesters and facile access to chargeâ€reversal hybrid micelles. Journal of Polymer Science Part A, 2016, 54, 1259-1267.	2.5	9
41	Design of zwitterionic polyester based nano-carriers for platinum(iv) prodrug delivery. Polymer Chemistry, 2019, 10, 5353-5363.	1.9	9
42	Homogeneous reinforcement as a strategy for the efficient preparation of high-strength, insulating and high heat-resistant PBO composite paper. Journal of Materials Science, 2022, 57, 8701-8713.	1.7	8
43	The yellowing mechanism of polyesteramide based on poly(ethylene terephthalate) and polyamide 6. Journal of Applied Polymer Science, 2021, 138, 49986.	1.3	4
44	A facile and economical method to synthesize a novel wide gamut fluorescent copolyester with outstanding properties. Polymer Chemistry, 2021, 13, 91-99.	1.9	4
45	A Non-Isocyanate Route to Poly(Ether Urethane): Synthesis and Effect of Chemical Structures of Hard Segment. Polymers, 2022, 14, 2039.	2.0	3