
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5865928/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Language-specific phoneme representations revealed by electric and magnetic brain responses. Nature, 1997, 385, 432-434.	13.7	1,091
2	Processing of novel sounds and frequency changes in the human auditory cortex: Magnetoencephalographic recordings. Psychophysiology, 1998, 35, 211-224.	1.2	280
3	The discrimination of and orienting to speech and non-speech sounds in children with autism. Brain Research, 2005, 1066, 147-157.	1.1	250
4	Statistical language learning in neonates revealed by event-related brain potentials. BMC Neuroscience, 2009, 10, 21.	0.8	225
5	Measurement of extensive auditory discrimination profiles using the mismatch negativity (MMN) of the auditory event-related potential (ERP). Clinical Neurophysiology, 2007, 118, 177-185.	0.7	216
6	Maturation of the auditory event-related potentials during the first year of life. NeuroReport, 2002, 13, 47-51.	0.6	190
7	Newborn infants can organize the auditory world. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11812-11815.	3.3	186
8	Sound frequency change detection in fetuses and newborns, a magnetoencephalographic study. NeuroImage, 2005, 28, 354-361.	2.1	184
9	Cohort Profile: The FinnBrain Birth Cohort Study (FinnBrain). International Journal of Epidemiology, 2018, 47, 15-16j.	0.9	173
10	Temporal window of integration of auditory information in the human brain. Psychophysiology, 1998, 35, 615-619.	1.2	168
11	Visual cortex activation in blind humans during sound discrimination. Neuroscience Letters, 1995, 183, 143-146.	1.0	166
12	Learning-induced neural plasticity of speech processing before birth. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15145-15150.	3.3	156
13	Top-down effects can modify the initially stimulus-driven auditory organization. Cognitive Brain Research, 2002, 13, 393-405.	3.3	143
14	Prenatal Music Exposure Induces Long-Term Neural Effects. PLoS ONE, 2013, 8, e78946.	1.1	142
15	Automatic auditory intelligence: An expression of the sensory–cognitive core of cognitive processes. Brain Research Reviews, 2010, 64, 123-136.	9.1	135
16	Combined mapping of human auditory EEG and MEG responses. Electroencephalography and Clinical Neurophysiology - Evoked Potentials, 1998, 108, 370-379.	2.0	132
17	Frequency discrimination at different frequency levels as indexed by electrophysiological and behavioral measures. Cognitive Brain Research, 2004, 20, 26-36.	3.3	124
18	Short-term memory functions of the human fetus recorded with magnetoencephalography. NeuroReport, 2005, 16, 81-84.	0.6	118

#	Article	IF	CITATIONS
19	Enhanced Memory Consolidation Via Automatic Sound Stimulation During Non-REM Sleep. Sleep, 2017, 40, .	0.6	115
20	Hemispheric lateralization in preattentive processing of speech sounds. Neuroscience Letters, 1998, 258, 9-12.	1.0	114
21	Abstract phoneme representations in the left temporal cortex: magnetic mismatch negativity study. NeuroReport, 2002, 13, 1813-1816.	0.6	110
22	Newborn infants' auditory system is sensitive to Western music chord categories. Frontiers in Psychology, 2013, 4, 492.	1.1	106
23	Event-related potentials associated with second language learning in children. Clinical Neurophysiology, 2003, 114, 1507-1512.	0.7	102
24	Musical aptitude and second language pronunciation skills in school-aged children: Neural and behavioral evidence. Brain Research, 2008, 1194, 81-89.	1.1	96
25	Processing acoustic change and novelty in newborn infants. European Journal of Neuroscience, 2007, 26, 265-274.	1.2	95
26	Hemodynamic responses to speech and music in newborn infants. Human Brain Mapping, 2010, 31, 595-603.	1.9	93
27	The development of aesthetic responses to music and their underlying neural and psychological mechanisms. Cortex, 2011, 47, 1138-1146.	1.1	92
28	A kind of auditory â€~primitive intelligence' already present at birth. European Journal of Neuroscience, 2005, 21, 3201-3204.	1.2	84
29	Fast multi-feature paradigm for recording several mismatch negativities (MMNs) to phonetic and acoustic changes in speech sounds. Biological Psychology, 2009, 82, 219-226.	1.1	77
30	Speech-sound discrimination in neonates as measured with MEG. NeuroReport, 2004, 15, 2089-2092.	0.6	76
31	The Psychophysiology Primer: A Guide to Methods and a Broad Review with a Focus on Human–Computer Interaction. Foundations and Trends in Human-Computer Interaction, 2016, 9, 151-308.	1.8	76
32	Auditory ERPs Reveal Brain Dysfunction in Infants With Plagiocephaly. Journal of Craniofacial Surgery, 2002, 13, 520-525.	0.3	75
33	Auditory magnetic responses of healthy newborns. NeuroReport, 2003, 14, 1871-1875.	0.6	75
34	Music playschool enhances children's linguistic skills. Scientific Reports, 2018, 8, 8767.	1.6	73
35	Atypical perceptual narrowing in prematurely born infants is associated with compromised language acquisition at 2 years of age. BMC Neuroscience, 2010, 11, 88.	0.8	72
36	Investigating the effects of musical training on functional brain development with a novel Melodic MMN paradigm. Neurobiology of Learning and Memory, 2014, 110, 8-15.	1.0	72

#	Article	IF	CITATIONS
37	Enhanced development of auditory change detection in musically trained schoolâ€aged children: a longitudinal eventâ€related potential study. Developmental Science, 2014, 17, 282-297.	1.3	71
38	The role of blind humans' visual cortex in auditory change detection. Neuroscience Letters, 2005, 379, 127-131.	1.0	69
39	Linguistic relevance of duration within the native language determines the accuracy of speech-sound duration processing. Cognitive Brain Research, 2003, 16, 492-495.	3.3	68
40	Sleeping newborns extract prosody from continuous speech. Clinical Neurophysiology, 2008, 119, 332-341.	0.7	65
41	Event-related potential correlates of sound duration: similar pattern from birth to adulthood. NeuroReport, 2001, 12, 3777-3781.	0.6	64
42	Auditory event-related potentials and cognitive function of preterm children at five years of age. Clinical Neurophysiology, 2007, 118, 1494-1502.	0.7	60
43	Auditory discrimination profiles of speech sound changes in 6-year-old children as determined with the multi-feature MMN paradigm. Clinical Neurophysiology, 2009, 120, 916-921.	0.7	60
44	Music perception and cognition: development, neural basis, and rehabilitative use of music. Wiley Interdisciplinary Reviews: Cognitive Science, 2013, 4, 441-451.	1.4	60
45	Orderly cortical representation of vowel categories presented by multiple exemplars. Cognitive Brain Research, 2004, 21, 342-350.	3.3	59
46	Recommended Standards for Fetal Magnetocardiography. PACE - Pacing and Clinical Electrophysiology, 2003, 26, 2121-2126.	0.5	58
47	The perception of prosody and associated auditory cues in early-implanted children: The role of auditory working memory and musical activities. International Journal of Audiology, 2014, 53, 182-191.	0.9	58
48	Neonatal frequency discrimination in 250–4000-Hz range: Electrophysiological evidence. Clinical Neurophysiology, 2007, 118, 412-419.	0.7	57
49	Mismatch negativity (MMN) elicited by changes in phoneme length: A cross-linguistic study. Brain Research, 2006, 1072, 175-185.	1.1	56
50	Auditory temporal grouping in newborn infants. Psychophysiology, 2007, 44, 697-702.	1.2	56
51	Informal musical activities are linked to auditory discrimination and attention in 2–3â€yearâ€old children: an eventâ€related potential study. European Journal of Neuroscience, 2013, 37, 654-661.	1.2	56
52	Linking Brain Responses to Naturalistic Music Through Analysis of Ongoing EEG and Stimulus Features. IEEE Transactions on Multimedia, 2013, 15, 1060-1069.	5.2	56
53	Bilateral hemodynamic responses to auditory stimulation in newborn infants. NeuroReport, 2005, 16, 1373-1377.	0.6	54
54	Memory-related processing of complex sound patterns in human auditory cortex. NeuroReport, 1993, 4, 391-394.	0.6	51

#	Article	IF	CITATIONS
55	Impaired Temporal Lobe Processing of Preattentive Auditory Discrimination in Schizophrenia. Schizophrenia Bulletin, 2002, 28, 467-474.	2.3	51
56	Interaction between representations of different features of auditory sensory memory. NeuroReport, 1993, 4, 1279.	0.6	50
57	Resersal of cerebral asymmetry in schizophrenia measured with magnetoencephalography. Schizophrenia Research, 1998, 30, 209-219.	1.1	48
58	Event-related brain responses while listening to entire pieces of music. Neuroscience, 2016, 312, 58-73.	1.1	47
59	The role of musical aptitude and language skills in preattentive duration processing in school-aged children. Neuroscience Letters, 2009, 460, 161-165.	1.0	46
60	The mismatch negativity (MMN) with no standard stimulus. Clinical Neurophysiology, 2010, 121, 1043-1050.	0.7	46
61	Rapid effects of neonatal music therapy combined with kangaroo care on prematurely-born infants. Nordic Journal of Music Therapy, 2011, 20, 22-42.	0.7	46
62	Fast Measurement of Auditory Event-Related Potential Profiles in 2–3-Year-Olds. Developmental Neuropsychology, 2012, 37, 51-75.	1.0	46
63	Melodic multi-feature paradigm reveals auditory profiles in music-sound encoding. Frontiers in Human Neuroscience, 2014, 8, 496.	1.0	45
64	Speech-sound duration processing in a second language is specific to phonetic categories. Brain and Language, 2005, 92, 26-32.	0.8	44
65	Auditory Profiles of Classical, Jazz, and Rock Musicians: Genre-Specific Sensitivity to Musical Sound Features. Frontiers in Psychology, 2015, 6, 1900.	1.1	43
66	Impaired preconscious auditory processing and cognitive functions in Alzheimer's disease. Clinical Neurophysiology, 1999, 110, 1942-1947.	0.7	41
67	Change detection in newborns using a multiple deviant paradigm: A study using magnetoencephalography. Clinical Neurophysiology, 2009, 120, 530-538.	0.7	41
68	Predictive coding accelerates word recognition and learning in the early stages of language development. Developmental Science, 2017, 20, e12472.	1.3	41
69	Why and how music can be used to rehabilitate and develop speech and language skills in hearing-impaired children. Hearing Research, 2019, 380, 108-122.	0.9	41
70	Infant Directed Speech Enhances Statistical Learning in Newborn Infants: An ERP Study. PLoS ONE, 2016, 11, e0162177.	1.1	41
71	Timbre Similarity: Convergence of Neural, Behavioral, and Computational Approaches. Music Perception, 1998, 16, 223-241.	0.5	40
72	The Perception of Phonological Quantity based on Durational Cues by Native Speakers, Second-language Users and Nonspeakers of Finnish. Language and Speech, 2005, 48, 313-338.	0.6	39

#	Article	IF	CITATIONS
73	Alterations in attention capture to auditory emotional stimuli in job burnout: An event-related potential study. International Journal of Psychophysiology, 2014, 94, 427-436.	0.5	39
74	The newborn human brain binds sound features together. NeuroReport, 2003, 14, 2117-2119.	0.6	38
75	Changes in acoustic features and their conjunctions are processed by separate neuronal populations. NeuroReport, 2001, 12, 525-529.	0.6	37
76	Infants' brain responses for speech sound changes in fast multifeature MMN paradigm. Clinical Neurophysiology, 2013, 124, 1578-1585.	0.7	37
77	Fast determination of MMN and P3a responses to linguistically and emotionally relevant changes in pseudoword stimuli. Neuroscience Letters, 2014, 577, 28-33.	1.0	37
78	Musicianship facilitates the processing of Western music chords—An ERP and behavioral study. Neuropsychologia, 2014, 61, 247-258.	0.7	37
79	Newborns discriminate novel from harmonic sounds: A study using magnetoencephalography. Clinical Neurophysiology, 2006, 117, 496-503.	0.7	36
80	Cortical processing of musical sounds in children with Cochlear Implants. Clinical Neurophysiology, 2012, 123, 1966-1979.	0.7	36
81	Job burnout is associated with dysfunctions in brain mechanisms of voluntary and involuntary attention. Biological Psychology, 2016, 117, 56-66.	1.1	36
82	Magnetoencephalographic Signatures of Numerosity Discrimination in Fetuses and Neonates. Developmental Neuropsychology, 2014, 39, 316-329.	1.0	35
83	Two Distinct Auditory-Motor Circuits for Monitoring Speech Production as Revealed by Content-Specific Suppression of Auditory Cortex. Cerebral Cortex, 2015, 25, 1576-1586.	1.6	34
84	Interplay between singing and cortical processing of music: a longitudinal study in children with cochlear implants. Frontiers in Psychology, 2014, 5, 1389.	1.1	33
85	Effects of prosodic familiarity on the automatic processing of words in the human brain. International Journal of Psychophysiology, 2009, 73, 362-368.	0.5	32
86	Promises of formal and informal musical activities in advancing neurocognitive development throughout childhood. Annals of the New York Academy of Sciences, 2015, 1337, 153-162.	1.8	32
87	Long-term memory traces facilitate short-term memory trace formation in audition in humans. Neuroscience Letters, 2001, 310, 133-136.	1.0	30
88	Heart Rate Variability for Evaluating Vigilant Attention in Partial Chronic Sleep Restriction. Sleep, 2014, 37, 1257-1267.	0.6	30
89	An extensive pattern of atypical neural speech-sound discrimination in newborns at risk of dyslexia. Clinical Neurophysiology, 2019, 130, 634-646.	0.7	30
90	Children's brain responses to sound changes in pseudo words in a multifeature paradigm. Clinical Neurophysiology, 2013, 124, 1132-1138.	0.7	29

#	Article	IF	CITATIONS
91	Newborn human brain identifies repeated auditory feature conjunctions of low sequential probability. European Journal of Neuroscience, 2004, 20, 2819-2821.	1.2	28
92	Cortical auditory event-related potentials in newborn infants. Seminars in Fetal and Neonatal Medicine, 2006, 11, 452-458.	1.1	28
93	Cognitive flexibility modulates maturation and musicâ€ŧrainingâ€ŧelated changes in neural sound discrimination. European Journal of Neuroscience, 2016, 44, 1815-1825.	1.2	28
94	Plastic cortical changes induced by learning to communicate with non-speech sounds. NeuroReport, 2003, 14, 1683-1687.	0.6	27
95	Effects of live music therapy on heart rate variability and self-reported stress and anxiety among hospitalized pregnant women: A randomized controlled trial. Nordic Journal of Music Therapy, 2019, 28, 7-26.	0.7	27
96	Developmental Links Between Speech Perception in Noise, Singing, and Cortical Processing of Music in Children with Cochlear Implants. Music Perception, 2018, 36, 156-174.	0.5	26
97	The Promises of Change-Related Brain Potentials in Cognitive Neuroscience of Music. Annals of the New York Academy of Sciences, 2003, 999, 29-39.	1.8	25
98	Does sleep quality affect involuntary attention switching system?. Neuroscience Letters, 2005, 390, 150-155.	1.0	24
99	Linguistic multifeature MMN paradigm for extensive recording of auditory discrimination profiles. Psychophysiology, 2011, 48, 1372-1380.	1.2	23
100	Phoneme processing skills are reflected in children's MMN responses. Neuropsychologia, 2017, 101, 76-84.	0.7	23
101	Preserved stimulus deviance detection in Alzheimer's disease. NeuroReport, 2001, 12, 1649-1652.	0.6	21
102	Rhythmic structure facilitates learning from auditory input in newborn infants. , 2019, 57, 101346.		21
103	Fast parametric evaluation of central speech-sound processing with mismatch negativity (MMN). International Journal of Psychophysiology, 2013, 87, 103-110.	0.5	20
104	Using magnetoencephalography in assessing auditory skills in infants and children. International Journal of Psychophysiology, 2008, 68, 123-129.	0.5	19
105	Numerical discrimination in newborn infants as revealed by eventâ€related potentials to tone sequences. European Journal of Neuroscience, 2009, 30, 1620-1624.	1.2	19
106	Processing of novel sounds and frequency changes in the human auditory cortex: Magnetoencephalographic recordings. , 1998, 35, 211.		19
107	Training in Morse code enhances involuntary attentional switching to acoustic frequency: Evidence from ERPs. Brain Research, 2006, 1073-1074, 417-424.	1.1	17
108	No effects of mobile phone use on cortical auditory changeâ€detection in children: An ERP study. Bioelectromagnetics, 2010, 31, 191-199.	0.9	17

#	Article	IF	CITATIONS
109	Shifting of attentional set is inadequate in severe burnout: Evidence from an event-related potential study. International Journal of Psychophysiology, 2017, 112, 70-79.	0.5	17
110	Why our brains love arts and crafts. FormAkademisk, 2018, 11, .	0.1	17
111	Selectively Enhanced Development of Working Memory in Musically Trained Children and Adolescents. Frontiers in Integrative Neuroscience, 2019, 13, 62.	1.0	17
112	Auditory stimuli activate parietal brain regions. NeuroReport, 1994, 6, 182-184.	0.6	16
113	Behavioral and evoked potential measures of distraction in 5-year-old children born preterm. International Journal of Psychophysiology, 2010, 77, 8-12.	0.5	16
114	Neural correlates of music recognition in Down syndrome. Brain and Cognition, 2013, 81, 256-262.	0.8	16
115	How can neuroscience help understand design and craft activity? The promise of cognitive neuroscience in design studies. FormAkademisk, 2016, 9, .	0.1	16
116	Exploring Frequency-Dependent Brain Networks from Ongoing EEG Using Spatial ICA During Music Listening. Brain Topography, 2020, 33, 289-302.	0.8	16
117	Perinatal cerebral insults alter auditory event-related potentials. Early Human Development, 2011, 87, 89-95.	0.8	15
118	Perception of emotional content in musical performances by 3–7-year-old children. Musicae Scientiae, 2013, 17, 495-512.	2.2	15
119	Within- and between-session replicability of cognitive brain processes: An MEG study with an N-back task. Physiology and Behavior, 2016, 158, 43-53.	1.0	15
120	Auditory event-related potentials at preschool age in children born very preterm. Clinical Neurophysiology, 2014, 125, 449-456.	0.7	14
121	Auditory event-related potentials are related to cognition at preschool age after very preterm birth. Pediatric Research, 2015, 77, 570-578.	1.1	14
122	Arcuate fasciculus architecture is associated with individual differences in pre-attentive detection of unpredicted music changes. NeuroImage, 2021, 229, 117759.	2.1	14
123	Is there a direct neural correlate for memory-trace formation in audition?. NeuroReport, 2007, 18, 1281-1284.	0.6	13
124	Preattentive auditory information processing under exposure to the 902 MHz GSM mobile phone electromagnetic field: A mismatch negativity (MMN) study. Bioelectromagnetics, 2009, 30, 241-248.	0.9	13
125	Magnetoencephalography of the newborn brain. Seminars in Fetal and Neonatal Medicine, 2006, 11, 437-443.	1.1	12
126	Healthy full-term infants' brain responses to emotionally and linguistically relevant sounds using a multi-feature mismatch negativity (MMN) paradigm. Neuroscience Letters, 2018, 670, 110-115.	1.0	12

#	Article	IF	CITATIONS
127	Expressive Timing Facilitates the Neural Processing of Phrase Boundaries in Music: Evidence from Event-Related Potentials. PLoS ONE, 2013, 8, e55150.	1.1	12
128	Implicit Segmentation of a Stream of Syllables Based on Transitional Probabilities: An MEG Study. Journal of Psycholinguistic Research, 2012, 41, 71-82.	0.7	11
129	A new dimension on foetal language learning. Acta Paediatrica, International Journal of Paediatrics, 2013, 102, 102-103.	0.7	11
130	Promises of Music in Education?. Frontiers in Education, 2018, 3, .	1.2	11
131	Emotional Processing in the First 2 Years of Life: A Review of Nearâ€Infrared Spectroscopy Studies. Journal of Neuroimaging, 2018, 28, 441-454.	1.0	11
132	Musical playschool activities are linked to faster auditory development during preschool-age: a longitudinal ERP study. Scientific Reports, 2019, 9, 11310.	1.6	11
133	Expression of emotion through musical parameters in 3- and 5-year-olds. Music Education Research, 2019, 21, 596-605.	0.8	11
134	Phoneme quality and quantity are processed independently in the human brain. NeuroReport, 2005, 16, 1857-1860.	0.6	10
135	Maturation of Speech-Sound ERPs in 5–6-Year-Old Children: A Longitudinal Study. Frontiers in Neuroscience, 2018, 12, 814.	1.4	10
136	Hemodynamic responses to emotional speech in two-month-old infants imaged using diffuse optical tomography. Scientific Reports, 2019, 9, 4745.	1.6	10
137	Neural processing of changes in phonetic and emotional speech sounds and tones in preterm infants at term age. International Journal of Psychophysiology, 2020, 148, 111-118.	0.5	10
138	Maternal sleep quality during pregnancy is associated with neonatal auditory ERPs. Scientific Reports, 2020, 10, 7228.	1.6	10
139	Effects of maternal singing during kangaroo care on maternal anxiety, wellbeing, and mother-infant relationship after preterm birth: a mixed methods study. Nordic Journal of Music Therapy, 2021, 30, 357-376.	0.7	10
140	Neural Encoding of Pitch Direction Is Enhanced in Musically Trained Children and Is Related to Reading Skills. Frontiers in Psychology, 2019, 10, 1475.	1.1	9
141	The Use of Digital Technologies at School and Cognitive Learning Outcomes: A Population-Based Study in Finland. International Journal of Educational Psychology, 2021, 10, 1.	0.2	9
142	Optimal resource allocation for novelty detection in a human auditory memory. NeuroReport, 1996, 7, 2479-2482.	0.6	8
143	Brain Research Reveals Automatic Musical Memory Functions in Children. Annals of the New York Academy of Sciences, 2009, 1169, 178-181.	1.8	8
144	Building blocks of fetal cognition: emotion and language. Infant and Child Development, 2010, 19, 94-98.	0.9	8

#	Article	IF	CITATIONS
145	Breakfast high in whey protein or carbohydrates improves coping with workload in healthy subjects. British Journal of Nutrition, 2013, 110, 1712-1721.	1.2	8
146	Distortion and Western Music Chord Processing. Music Perception, 2018, 35, 315-331.	0.5	8
147	Relationship between maternal pregnancy-related anxiety and infant brain responses to emotional speech – a pilot study. Journal of Affective Disorders, 2020, 262, 62-70.	2.0	8
148	Behavioral and electrophysiological indicators of auditory distractibility in children with ADHD and comorbid ODD. Brain Research, 2016, 1632, 42-50.	1.1	7
149	Repeated Parental Singing During Kangaroo Care Improved Neural Processing of Speech Sound Changes in Preterm Infants at Term Age. Frontiers in Neuroscience, 2021, 15, 686027.	1.4	7
150	Effects of unilateral hippocampus-amygdala-partial temporal lobe resection on auditory EEG/MEG responses: A case study. Scandinavian Journal of Psychology, 2007, 48, 367-373.	0.8	6
151	Brain responses to surprising sounds are related to temperament and parent–child dyadic synchrony in young children. Developmental Psychobiology, 2010, 52, 513-523.	0.9	6
152	Degree of Perceived Accent in Finnish as a Second Language for Turkish Children Born in Finland. Language Learning, 2015, 65, 477-503.	1.4	6
153	Exploiting ongoing EEG with multilinear partial least squares during free-listening to music. , 2016, , .		6
154	Middle latency response correlates of single and double deviant stimuli in a multi-feature paradigm. Clinical Neurophysiology, 2016, 127, 388-396.	0.7	6
155	Planning musicâ€based amelioration and training in infancy and childhood based on neural evidence. Annals of the New York Academy of Sciences, 2018, 1423, 146-154.	1.8	6
156	Applying stochastic spike train theory for high-accuracy human MEG/EEG. Journal of Neuroscience Methods, 2020, 340, 108743.	1.3	6
157	Auditory Processing of the Brain Is Enhanced by Parental Singing for Preterm Infants. Frontiers in Neuroscience, 2022, 16, 772008.	1.4	6
158	The human brain processes repeated auditory feature conjunctions of low sequential probability. Neuroscience Letters, 2004, 355, 97-100.	1.0	3
159	Magnetoencephalography in Studies of Infants and Children. International Review of Neurobiology, 2005, 68, 25-50.	0.9	3
160	Mismatch negativity reflects numbers of tones of specific frequencies in humans. Neuroscience Letters, 2008, 436, 138-140.	1.0	3
161	A real-time detector system for precise timing of audiovisual stimuli. , 2012, 2012, 554-7.		3
162	The Effects of a Digital Articulatory Game on the Ability to Perceive Speech-Sound Contrasts in Another Language. Frontiers in Education, 2021, 6, .	1.2	3

#	Article	IF	CITATIONS
163	Student-oriented teaching practices and educational equality: a population-based study. Electronic Journal of Research in Educational Psychology, 2020, 18, .	0.2	2
164	Musical perceptual skills, but not neural auditory processing, are associated with better reading ability in childhood. Neuropsychologia, 2022, 169, 108189.	0.7	2
165	Physiological measurements and emotional experiences of drawing and clay forming. Arts in Psychotherapy, 2022, 79, 101899.	0.6	2
166	Increasing Stability of EEG Components Extraction Using Sparsity Regularized Tensor Decomposition. Lecture Notes in Computer Science, 2018, , 789-799.	1.0	1
167	Prenatal exposure to antiepileptic drugs and early processing of emotionally relevant sounds. Epilepsy and Behavior, 2019, 100, 106503.	0.9	1
168	Auditory deviance detection and involuntary attention allocation in occupational burnout—A followâ€up study. European Journal of Neuroscience, 2021, , .	1.2	1
169	Physiological measurements of drawing and forming activities. , 2016, , .		1
170	Mindsets and Failures: Neural Differences in Reactions to Mistakes among Second-Grade Finnish Girls. , 0, , .		1
171	Improving effectiveness and well-being in knowledge work through cognitive ergonomics. , 2012, , .		0
172	The effect of automatic blink correction on auditory evoked potentials. , 2012, 2012, 625-8.		0
173	1727aâ€Is occupational noise exposure during pregnancy related to language acquisition of the child?. , 2018, , .		Ο
174	Music for the Brain Across Life. A NIME Reader Fifteen Years of New Interfaces for Musical Expression, 2013, , 181-194.	0.1	0
175	High-Density Diffuse Optical Imaging of Total Hemoglobin Changes to Emotionally Valenced Speech in Two-Month Old Infants. , 2014, , .		0
176	The Association of Early Childhood Education and Care with Cognitive Learning Outcomes at 15 Years of Age in Finland. Psychology, 2019, 10, 500-520.	0.3	0
177	Auditory Mismatch Responses to Emotional Stimuli in 3-Year-Olds in Relation to Prenatal Maternal Depression Symptoms. Frontiers in Neuroscience, 2022, 16, .	1.4	0
178	Kielididaktiikan, kognitiivisen psykologian ja aivotutkimuksen yhteyksiÃætsimÃæ&Ĥ, 2022, 53, 273-286.		0