
Christine Blattner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5865401/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regulation of p53 by E3s. Cancers, 2021, 13, 745.	3.7	17
2	TRIMming Down Hormone-Driven Cancers: The Biological Impact of TRIM Proteins on Tumor Development, Progression and Prognostication. Cells, 2021, 10, 1517.	4.1	11
3	Delay in development and behavioural abnormalities in the absence of p53 in zebrafish. PLoS ONE, 2019, 14, e0220069.	2.5	12
4	Fam83F induces p53 stabilisation and promotes its activity. Cell Death and Differentiation, 2019, 26, 2125-2138.	11.2	16
5	Amniotic Fluid Cells, Stem Cells, and p53: Can We Stereotype p53 Functions?. International Journal of Molecular Sciences, 2019, 20, 2236.	4.1	4
6	The transient production of anti-TNF- $\hat{l}\pm$ antibody Adalimumab and a comparison of its characterization to the biosimilar Cinorra. Protein Expression and Purification, 2019, 155, 59-65.	1.3	2
7	Activity of p53 in human amniotic fluid stem cells increases their potentiality as a candidate for stem cell therapy. Brain Circulation, 2019, 5, 134.	1.8	2
8	p53 Is Active in Human Amniotic Fluid Stem Cells. Stem Cells and Development, 2018, 27, 1507-1517.	2.1	6
9	Cardiomyocytes Derived from Human CardiopoieticAmniotic Fluids. Scientific Reports, 2018, 8, 12028.	3.3	18
10	Expression screening using a Medaka cDNA library identifies evolutionarily conserved regulators of the p53/Mdm2 pathway. BMC Biotechnology, 2015, 15, 92.	3.3	5
11	New tricks for p53 regulation – restraint by protein coding RNAs. Cell and Bioscience, 2015, 5, 30.	4.8	0
12	Hierarchical Micro-Nano Surface Topography Promotes Long-Term Maintenance of Undifferentiated Mouse Embryonic Stem Cells. Nano Letters, 2015, 15, 7146-7154.	9.1	58
13	Antisense oligonucleotide–mediated MDM4 exon 6 skipping impairs tumor growth. Journal of Clinical Investigation, 2015, 126, 68-84.	8.2	138
14	Tetramerizationâ€defects of p53 result in aberrant ubiquitylation and transcriptional activity. Molecular Oncology, 2014, 8, 1026-1042.	4.6	20
15	Human Second Trimester Amniotic Fluid Cells are Able to Create Embryoid Body-Like Structures in Vitro and to Show Typical Expression Profiles of Embryonic and Primordial Germ Cells. Cell Transplantation, 2014, 23, 1501-1515.	2.5	39
16	Wnt Signaling Behaves as a "Master Regulator―in the Osteogenic and Adipogenic Commitment of Human Amniotic Fluid Mesenchymal Stem Cells. Stem Cell Reviews and Reports, 2013, 9, 642-654.	5.6	88
17	Interaction of HPV E6 oncoproteins with specific proteasomal subunits. Virology, 2013, 446, 389-396.	2.4	11
18	Regulation of p53: Size matters. Cell Cycle, 2012, 11, 1270-1270.	2.6	0

2

CHRISTINE BLATTNER

#	Article	IF	CITATIONS
19	Amniotic Fluid Stem Cells: a Promising Therapeutic Resource for Cell-Based Regenerative Therapy. Current Pharmaceutical Design, 2012, 18, 1846-1863.	1.9	56
20	Meeting report: Signal transduction meets systems biology. Cell Communication and Signaling, 2012, 10, 11.	6.5	3
21	PCNA-dependent accumulation of CDKN1A into nuclear foci after ionizing irradiation. DNA Repair, 2012, 11, 511-521.	2.8	16
22	DNA Repair in Embryonic Stem Cells. , 2011, , .		0
23	Amniotic Fluid as a Rich Source of Mesenchymal Stromal Cells for Transplantation Therapy. Cell Transplantation, 2011, 20, 789-796.	2.5	97
24	LiCl induces TNF-Î \pm and FasL production, thereby stimulating apoptosis in cancer cells. Cell Communication and Signaling, 2011, 9, 15.	6.5	25
25	p53 in stem cells. World Journal of Biological Chemistry, 2011, 2, 202.	4.3	65
26	Regulation of p53 Activity. Current Chemical Biology, 2010, 4, 1-12.	0.5	1
27	Regulation of p53 in embryonic stem cells. Experimental Cell Research, 2010, 316, 2434-2446.	2.6	42
28	Mdm2 facilitates the association of p53 with the proteasome. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10038-10043.	7.1	72
29	Nuclear accumulation and activation of p53 in embryonic stem cells after DNA damage. BMC Cell Biology, 2009, 10, 46.	3.0	91
30	lsolation of osteogenic progenitors from human amniotic fluid using a single step culture protocol. BMC Biotechnology, 2009, 9, 9.	3.3	46
31	Regulation of p53 - insights into a complex process. Critical Reviews in Biochemistry and Molecular Biology, 2009, 44, 367-392.	5.2	99
32	Nucleotide Excision Repair Driven by the Dissociation of CAK from TFIIH. Molecular Cell, 2008, 31, 9-20.	9.7	146
33	†Junk' DNA meets the p53 network. Molecular Systems Biology, 2008, 4, 231.	7.2	3
34	MDMX Promotes Proteasomal Turnover of p21 at G ₁ and Early S Phases Independently of, but in Cooperation with, MDM2. Molecular and Cellular Biology, 2008, 28, 1218-1229.	2.3	73
35	Regulation of p53: The next generation. Cell Cycle, 2008, 7, 3149-3153.	2.6	14
36	p53 stabilization in response to DNA damage requires Akt/PKB and DNA-PK. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7785-7790.	7.1	137

CHRISTINE BLATTNER

#	Article	IF	CITATIONS
37	Binding of p53 to the Central Domain of Mdm2 Is Regulated by Phosphorylation. Journal of Biological Chemistry, 2006, 281, 28575-28583.	3.4	65
38	Glycogen Synthase Kinase 3-Dependent Phosphorylation of Mdm2 Regulates p53 Abundance. Molecular and Cellular Biology, 2005, 25, 7170-7180.	2.3	121
39	Protein Kinase CK1δ Phosphorylates Key Sites in the Acidic Domain of Murine Double-Minute Clone 2 Protein (MDM2) That Regulate p53 Turnoverâ€. Biochemistry, 2004, 43, 16356-16364.	2.5	54
40	P53 Stabilization and the Role of Radiation-Induced Signalling. , 2004, , 93-99.		0
41	Involvement of the DNA Repair Protein hHR23 inp53Degradation. Molecular and Cellular Biology, 2003, 23, 8960-8969.	2.3	87
42	Radiation-Induced Cytoplasmic Signaling. , 2003, , 257-262.		0
43	Hypophosphorylation of Mdm2 Augments p53 Stability. Molecular and Cellular Biology, 2002, 22, 6170-6182.	2.3	132
44	UV-Induced Stabilization of c- fos and Other Short-Lived mRNAs. Molecular and Cellular Biology, 2000, 20, 3616-3625.	2.3	97
45	UV-Induced Stabilization of c-fos and Other Short-Lived mRNAs. Molecular and Cellular Biology, 2000, 20, 3616-3625.	2.3	14
46	DNA damage induced p53 stabilization: no indication for an involvement of p53 phosphorylation. Oncogene, 1999, 18, 1723-1732.	5.9	141
47	Radiation-induced signal transduction. Mechanisms and consequences. Comptes Rendus De L'Académie Des Sciences Série 3, Sciences De La Vie, 1999, 322, 121-125.	0.8	12
48	Transcription Factor E2F-1 Is Upregulated in Response to DNA Damage in a Manner Analogous to That of p53. Molecular and Cellular Biology, 1999, 19, 3704-3713.	2.3	213
49	Photoproducts in transcriptionally active DNA induce signal transduction to the delayed U.Vresponsive genes for collagenase and metallothionein. Oncogene, 1998, 16, 2827-2834.	5.9	39
50	O VII.1 Multiple "sensors―for toxic agents in the genetic stress response. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1997, 379, S47.	1.0	0
51	UV-induced signal transduction. Journal of Photochemistry and Photobiology B: Biology, 1997, 37, 1-17.	3.8	255
52	The mammalian UV response: Mechanism of DNA damage induced gene expression. Advances in Enzyme Regulation, 1994, 34, 381-395.	2.6	93
53	The LDL receptor pathway delivers arachidonic acid for eicosanoid formation in cells stimulated by platelet-derived growth factor. Nature, 1990, 345, 634-636.	27.8	94