Rodrigo M Maza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5865100/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	miR-182-5p Regulates Nogo-A Expression and Promotes Neurite Outgrowth of Hippocampal Neurons In Vitro. Pharmaceuticals, 2022, 15, 529.	1.7	2
2	MicroRNA-138-5p Targets Pro-Apoptotic Factors and Favors Neural Cell Survival: Analysis in the Injured Spinal Cord. Biomedicines, 2022, 10, 1559.	1.4	5
3	In Silico and In Vitro Analyses Validate Human MicroRNAs Targeting the SARS-CoV-2 3′-UTR. International Journal of Molecular Sciences, 2021, 22, 6094.	1.8	9
4	Alginate Hydrogels as Scaffolds and Delivery Systems to Repair the Damaged Spinal Cord. Biotechnology Journal, 2019, 14, e1900275.	1.8	49
5	Micro RNA â€135aâ€5p reduces P2X 7 â€dependent rise in intracellular calcium and protects against excitotoxicity. Journal of Neurochemistry, 2019, 151, 116-130.	2.1	10
6	Cell Specific Changes of Autophagy in a Mouse Model of Contusive Spinal Cord Injury. Frontiers in Cellular Neuroscience, 2018, 12, 164.	1.8	24
7	XIAP Interacts with and Regulates the Activity of FAF1. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 1335-1348.	1.9	5
8	Diadenosine tetraphosphate (Ap4A) inhibits ATP-induced excitotoxicity: a neuroprotective strategy for traumatic spinal cord injury treatment. Purinergic Signalling, 2017, 13, 75-87.	1.1	11
9	Acute administration of ucf-101 ameliorates the locomotor impairments induced by a traumatic spinal cord injury. Neuroscience, 2015, 300, 404-417.	1.1	8
10	MicroRNA dysregulation in spinal cord injury: causes, consequences and therapeutics. Frontiers in Cellular Neuroscience, 2014, 8, 53.	1.8	107
11	Deer antler innervation and regeneration. Frontiers in Bioscience - Landmark, 2012, 17, 1389.	3.0	23
12	MicroRNA Dysregulation in the Spinal Cord following Traumatic Injury. PLoS ONE, 2012, 7, e34534.	1.1	119
13	Factors promoting axon growth in the deer antler. Animal Production Science, 2011, 51, 351.	0.6	3
14	Factors promoting neurite outgrowth during deer antler regeneration. Journal of Neuroscience Research, 2010, 88, 3034-3047.	1.3	20
15	Gene Expression of Axon Growth Promoting Factors in the Deer Antler. PLoS ONE, 2010, 5, e15706.	1.1	28
16	Low-dose arsenic trioxide sensitizes glucocorticoid-resistant acute lymphoblastic leukemia cells to dexamethasone via an Akt-dependent pathway. Blood, 2007, 110, 2084-2091.	0.6	53
17	Transmembrane domains 1 and 3 of the glycine transporter GLYT1 contain structural determinants of N[3-(4′-fluorophenyl)-3-(4′-phenylphenoxy)-propyl]sarcosine specificity. Neuropharmacology, 2005, 49, 922-934.	2.0	8
18	Differential regulation of X-chromosome-linked inhibitor of apoptosis protein (XIAP) and caspase-3 by NMDA in developing hippocampal neurons; involvement of the mitochondrial pathway in NMDA-mediated neuronal survival. Experimental Cell Research, 2004, 295, 290-299.	1.2	16

Rodrigo M Maza

#	Article	IF	CITATIONS
19	Regulation of sympathetic neuron and neuroblastoma cell death by XIAP and its association with proteasomes in neural cells. Molecular and Cellular Neurosciences, 2003, 22, 308-318.	1.0	26
20	Transgenic mice overexpressing XIAP in neurons show better outcome after transient cerebral ischemia. Molecular and Cellular Neurosciences, 2003, 23, 302-313.	1.0	85
21	Substrate-induced Conformational Changes of Extracellular Loop 1 in the Glycine Transporter GLYT2. Journal of Biological Chemistry, 2001, 276, 43463-43470.	1.6	35
22	The Glial and the Neuronal Glycine Transporters Differ in Their Reactivity to Sulfhydryl Reagents. Journal of Biological Chemistry, 2001, 276, 17699-17705.	1.6	28
23	Differential effects of ethanol on glycine uptake mediated by the recombinant GLYT1 and GLYT2 glycine transporters. British Journal of Pharmacology, 2000, 129, 802-810.	2.7	20
24	Polarized Distribution of Glycine Transporter Isoforms in Epithelial and Neuronal Cells. Molecular and Cellular Neurosciences, 2000, 15, 99-111.	1.0	57
25	Amphetamine increases extracellular concentrations of glutamate in the prefrontal cortex of the awake rat: a microdialysis study. Neurochemical Research, 1998, 23, 1153-1158.	1.6	38
26	Differential Properties of Two Stably Expressed Brainâ€Specific Glycine Transporters. Journal of Neurochemistry, 1998, 71, 2211-2219.	2.1	92
27	Ring1A is a transcriptional repressor that interacts with the Polycomb-M33 protein and is expressed at rhombomere boundaries in the mouse hindbrain. EMBO Journal, 1997, 16, 5930-5942.	3.5	142