List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/586506/publications.pdf Version: 2024-02-01

SHUDONG WANG

#	Article	IF	CITATIONS
1	In vitro andin vivo antitumor properties of the cyclin dependent kinase inhibitor CYC202 (R-roscovitine). International Journal of Cancer, 2002, 102, 463-468.	2.3	371
2	Cyclin-dependent kinase 9: a key transcriptional regulator and potential drug target in oncology, virology and cardiology. Trends in Pharmacological Sciences, 2008, 29, 302-313.	4.0	192
3	Cyclin-Dependent Kinase 2 Inhibitors in Cancer Therapy: An Update. Journal of Medicinal Chemistry, 2019, 62, 4233-4251.	2.9	162
4	2-Anilino-4-(thiazol-5-yl)pyrimidine CDK Inhibitors:Â Synthesis, SAR Analysis, X-ray Crystallography, and Biological Activity. Journal of Medicinal Chemistry, 2004, 47, 1662-1675.	2.9	156
5	Targeting CDK2 in cancer: challenges and opportunities for therapy. Drug Discovery Today, 2020, 25, 406-413.	3.2	140
6	Targeting Mnks for Cancer Therapy. Oncotarget, 2012, 3, 118-131.	0.8	132
7	Discovery of a Novel Family of CDK Inhibitors with the Program LIDAEUS. Structure, 2003, 11, 399-410.	1.6	115
8	Substituted 4-(Thiazol-5-yl)-2-(phenylamino)pyrimidines Are Highly Active CDK9 Inhibitors: Synthesis, X-ray Crystal Structures, Structure–Activity Relationship, and Anticancer Activities. Journal of Medicinal Chemistry, 2013, 56, 640-659.	2.9	111
9	Targeting CDK6 in cancer: State of the art and new insights. Cell Cycle, 2015, 14, 3220-3230.	1.3	102
10	Overcoming CDK4/6 inhibitor resistance in ER-positive breast cancer. Endocrine-Related Cancer, 2019, 26, R15-R30.	1.6	96
11	Discovery and Characterization of 2-Anilino-4- (Thiazol-5-yl)Pyrimidine Transcriptional CDK Inhibitors as Anticancer Agents. Chemistry and Biology, 2010, 17, 1111-1121.	6.2	92
12	Discovery of <i>N</i> -Phenyl-4-(thiazol-5-yl)pyrimidin-2-amine Aurora Kinase Inhibitors. Journal of Medicinal Chemistry, 2010, 53, 4367-4378.	2.9	91
13	MAP Kinase-Interacting Kinases—Emerging Targets against Cancer. Chemistry and Biology, 2014, 21, 441-452.	6.2	83
14	Cyclin-Dependent Kinase 8: A New Hope in Targeted Cancer Therapy?. Journal of Medicinal Chemistry, 2018, 61, 5073-5092.	2.9	79
15	A novel Cdk9 inhibitor preferentially targets tumor cells and synergizes with fludarabine. Oncotarget, 2014, 5, 375-385.	0.8	73
16	Synthesis and biological evaluation of imidazo[4,5-b]pyridine and 4-heteroaryl-pyrimidine derivatives as anti-cancer agents. European Journal of Medicinal Chemistry, 2012, 57, 311-322.	2.6	68
17	Discovery of 5â€(2â€(Phenylamino)pyrimidinâ€4â€yl)thiazolâ€2(3 <i>H</i>)â€one Derivatives as Potent Mnk2 Inhibitors: Synthesis, SAR Analysis and Biological Evaluation. ChemMedChem, 2014, 9, 962-972.	1.6	67
18	CDK9: A Comprehensive Review of Its Biology, and Its Role as a Potential Target for Anti-Cancer Agents. Frontiers in Oncology, 2021, 11, 678559.	1.3	62

#	Article	IF	CITATIONS
19	Synthesis and biological activity of 2-anilino-4-(1H-pyrrol-3-yl) pyrimidine CDK inhibitors. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 4237-4240.	1.0	60
20	Structural Determinants of CDK4 Inhibition and Design of Selective ATP Competitive Inhibitors. Chemistry and Biology, 2004, 11, 525-534.	6.2	59
21	Synthesis and biological evaluation of benzo[d]imidazole derivatives as potential anti-cancer agents. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 1317-1321.	1.0	57
22	Targeting CDK9: a promising therapeutic opportunity in prostate cancer. Endocrine-Related Cancer, 2016, 23, T211-T226.	1.6	57
23	Highly Potent, Selective, and Orally Bioavailable 4-Thiazol- <i>N</i> -(pyridin-2-yl)pyrimidin-2-amine Cyclin-Dependent Kinases 4 and 6 Inhibitors as Anticancer Drug Candidates: Design, Synthesis, and Evaluation. Journal of Medicinal Chemistry, 2017, 60, 1892-1915.	2.9	55
24	CDKIâ€71, a novel CDK9 inhibitor, is preferentially cytotoxic to cancer cells compared to flavopiridol. International Journal of Cancer, 2012, 130, 1216-1226.	2.3	54
25	Comparative Structural and Functional Studies of 4-(Thiazol-5-yl)-2-(phenylamino)pyrimidine-5-carbonitrile CDK9 Inhibitors Suggest the Basis for Isotype Selectivity. Journal of Medicinal Chemistry, 2013, 56, 660-670.	2.9	51
26	Lipophilic Prodrugs of SN38: Synthesis and in Vitro Characterization toward Oral Chemotherapy. Molecular Pharmaceutics, 2016, 13, 287-294.	2.3	51
27	Targeting RNA transcription and translation in ovarian cancer cells with pharmacological inhibitor CDKI-73. Oncotarget, 2014, 5, 7691-7704.	0.8	48
28	Synthesis, structure–activity relationship and biological evaluation of 2,4,5-trisubstituted pyrimidine CDK inhibitors as potential anti-tumour agents. European Journal of Medicinal Chemistry, 2013, 70, 447-455.	2.6	45
29	CDK7 Inhibitors in Cancer Therapy: The Sweet Smell of Success?. Journal of Medicinal Chemistry, 2020, 63, 7458-7474.	2.9	42
30	Enabling Oral SN38-Based Chemotherapy with a Combined Lipophilic Prodrug and Self-Microemulsifying Drug Delivery System. Molecular Pharmaceutics, 2016, 13, 3518-3525.	2.3	41
31	Pharmacologic co-inhibition of Mnks and mTORC1 synergistically suppresses proliferation and perturbs cell cycle progression in blast crisis-chronic myeloid leukemia cells. Cancer Letters, 2015, 357, 612-623.	3.2	40
32	Targeting CDK9 for treatment of colorectal cancer. Molecular Oncology, 2019, 13, 2178-2193.	2.1	39
33	CDK5 in oncology: recent advances and future prospects. Future Medicinal Chemistry, 2017, 9, 1939-1962.	1.1	36
34	Synthesis and configuration of the cyclin-dependent kinase inhibitor roscovitine and its enantiomer. Tetrahedron: Asymmetry, 2001, 12, 2891-2894.	1.8	35
35	Targeting Pim kinases for cancer treatment: opportunities and challenges. Future Medicinal Chemistry, 2015, 7, 35-53.	1.1	35
36	Design, Synthesis, and Evaluation of 2-Methyl- and 2-Amino-N-aryl-4,5-dihydrothiazolo[4,5-h]quinazolin-8-amines as Ring-Constrained 2-Anilino-4-(thiazol-5-yl)pyrimidine Cyclin-Dependent Kinase Inhibitors. Journal of Medicinal Chemistry, 2010, 53, 2136-2145.	2.9	31

#	Article	IF	CITATIONS
37	Discovery of 4-(dihydropyridinon-3-yl)amino-5-methylthieno[2,3-d]pyrimidine derivatives as potent Mnk inhibitors: synthesis, structure–activity relationship analysis and biological evaluation. European Journal of Medicinal Chemistry, 2015, 95, 116-126.	2.6	31
38	Pharmacologic Inhibition of MNKs in Acute Myeloid Leukemia. Molecular Pharmacology, 2015, 88, 380-389.	1.0	26
39	CDKI-73: an orally bioavailable and highly efficacious CDK9 inhibitor against acute myeloid leukemia. Investigational New Drugs, 2019, 37, 625-635.	1.2	26
40	An integrated approach for discovery of highly potent and selective Mnk inhibitors: Screening, synthesis and SAR analysis. European Journal of Medicinal Chemistry, 2015, 103, 539-550.	2.6	25
41	Discovery and pharmacological evaluation of a novel series of adamantyl cyanoguanidines as P2X7 receptor antagonists. European Journal of Medicinal Chemistry, 2017, 130, 433-439.	2.6	24
42	Discovery of (<i>E</i>)-3-((Styrylsulfonyl)methyl)pyridine and (<i>E</i>)-2-((Styrylsulfonyl)methyl)pyridine Derivatives as Anticancer Agents: Synthesis, Structure–Activity Relationships, and Biological Activities. Journal of Medicinal Chemistry, 2014, 57, 2275-2291.	2.9	23
43	Dual Inhibition of Mnk2 and FLT3 for potential treatment of acute myeloid leukaemia. European Journal of Medicinal Chemistry, 2017, 139, 762-772.	2.6	23
44	In Vitro Antitumor Mechanism of (<i>E</i>)- <i>N</i> -(2-methoxy-5-(((2,4,6-trimethoxystyryl)sulfonyl)methyl)pyridin-3-yl)methanesulfonamide. Molecular Pharmacology, 2015, 87, 18-30.	1.0	21
45	Efficacy of combined CDK9/BET inhibition in preclinical models of MLL-rearranged acute leukemia. Blood Advances, 2020, 4, 296-300.	2.5	20
46	Inhibition of Mnk enhances apoptotic activity of cytarabine in acute myeloid leukemia cells. Oncotarget, 2016, 7, 56811-56825.	0.8	20
47	Unveiling new chemical scaffolds as Mnk inhibitors. Future Medicinal Chemistry, 2016, 8, 271-285.	1.1	18
48	Discovery and pharmacological characterization of a novel series of highly selective inhibitors of cyclinâ€dependent kinases 4 and 6 as anticancer agents. British Journal of Pharmacology, 2018, 175, 2399-2413.	2.7	18
49	Discovery of CDK5 Inhibitors through Structure-Guided Approach. ACS Medicinal Chemistry Letters, 2019, 10, 786-791.	1.3	18
50	In Search of Novel CDK8 Inhibitors by Virtual Screening. Journal of Chemical Information and Modeling, 2017, 57, 413-416.	2.5	17
51	Repurposing existing therapeutics, its importance in oncology drug development: Kinases as a potential target. British Journal of Clinical Pharmacology, 2022, 88, 64-74.	1.1	17
52	ZJU-6, a novel derivative of Erianin, shows potent anti-tubulin polymerisation and anti-angiogenic activities. Investigational New Drugs, 2012, 30, 1899-1907.	1.2	16
53	Small-Molecule Inhibitors of Tankyrases as Prospective Therapeutics for Cancer. Journal of Medicinal Chemistry, 2022, 65, 5244-5273.	2.9	16
54	Identification of a Highly Conserved Allosteric Binding Site on Mnk1 and Mnk2. Molecular Pharmacology, 2015, 88, 935-948.	1.0	15

#	Article	IF	CITATIONS
55	Synthesis and biological evaluation of benzyl styrylsulfonyl derivatives as potent anticancer mitotic inhibitors. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 3066-3069.	1.0	14
56	In vitro antitumor mechanism of a novel cyclin-dependent kinase inhibitor CDKI-83. Investigational New Drugs, 2012, 30, 889-897.	1.2	14
57	CDK12: a potential therapeutic target in cancer. Drug Discovery Today, 2020, 25, 2257-2267.	3.2	14
58	Combined Inhibition of Epigenetic Readers and Transcription Initiation Targets the EWS-ETS Transcriptional Program in Ewing Sarcoma. Cancers, 2020, 12, 304.	1.7	13
59	Potent and orally bioavailable CDK8 inhibitors: Design, synthesis, structure-activity relationship analysis and biological evaluation. European Journal of Medicinal Chemistry, 2021, 214, 113248.	2.6	13
60	A novel series of <i>N</i> -(pyridin-2-yl)-4-(thiazol-5-yl)pyrimidin-2-amines as highly potent CDK4/6 inhibitors. Future Medicinal Chemistry, 2017, 9, 1495-1506.	1.1	11
61	Insights into the Importance of DFD-Motif and Insertion I1 in Stabilizing the DFD-Out Conformation of Mnk2 Kinase. ACS Medicinal Chemistry Letters, 2013, 4, 736-741.	1.3	10
62	Synthesis and biological evaluation of heteroaryl styryl sulfone derivatives as anticancer agents. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 5674-5678.	1.0	10
63	Synthesis and evaluation of 2′H-spiro[cyclohexane-1,3′-imidazo[1,5-a]pyridine]-1′,5′-dione derivatives Mnk inhibitors. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 2650-2654.	as 1.0	10
64	Structure-based design of highly selective 2,4,5-trisubstituted pyrimidine CDK9 inhibitors as anti-cancer agents. European Journal of Medicinal Chemistry, 2021, 214, 113244.	2.6	10
65	A first-in-class CDK4 inhibitor demonstrates in vitro, ex-vivo and in vivo efficacy against ovarian cancer. Gynecologic Oncology, 2020, 159, 827-838.	0.6	9
66	A novel compound which sensitizes BRAF wild-type melanoma cells to vemurafenib in a TRIM16-dependent manner. Oncotarget, 2016, 7, 52166-52178.	0.8	9
67	Mnk inhibitors: a patent review. Pharmaceutical Patent Analyst, 2021, 10, 25-35.	0.4	8
68	Inhibition of CDK9 induces apoptosis and potentiates the effect of cisplatin in hypopharyngeal carcinoma cells. Biochemical and Biophysical Research Communications, 2017, 482, 536-541.	1.0	7
69	Discovery of novel 4-azaaryl-N-phenylpyrimidin-2-amine derivatives as potent and selective FLT3 inhibitors for acute myeloid leukaemia with FLT3 mutations. European Journal of Medicinal Chemistry, 2021, 213, 113215.	2.6	7
70	A Combination of Epigenetic BET and CDK9 Inhibitors for Treatment of Human Melanoma. Journal of Investigative Dermatology, 2021, 141, 2238-2249.e12.	0.3	7
71	Discovery of N-Phenyl-4-(1H-pyrrol-3-yl)pyrimidin-2-amine Derivatives as Potent Mnk2 Inhibitors: Design, Synthesis, SAR Analysis, and Evaluation of in vitro Anti-leukaemic Activity. Medicinal Chemistry, 2019, 15, 602-623.	0.7	7
72	Dynamical insights of Mnk2 kinase activation by phosphorylation to facilitate inhibitor discovery. Future Medicinal Chemistry, 2015, 7, 91-102.	1.1	6

#	ARTICLE	IF	CITATIONS
73	CDKI-73 Is a Novel Pharmacological Inhibitor of Rab11 Cargo Delivery and Innate Immune Secretion. Cells, 2020, 9, 372.	1.8	6
74	Investigation of a Novel Cyclin-Dependent-Kinase (CDK) Inhibitor Cdki-73 As an Effective Treatment Option for MLL-AML. Blood, 2015, 126, 1365-1365.	0.6	6
75	An Orally Bioavailable and Highly Efficacious Inhibitor of CDK9/FLT3 for the Treatment of Acute Myeloid Leukemia. Cancers, 2022, 14, 1113.	1.7	6
76	Discovery of a potent, highly selective, and orally bioavailable inhibitor of CDK8 through a structure-based optimisation. European Journal of Medicinal Chemistry, 2021, 218, 113391.	2.6	5
77	An overview of CDK3 in cancer: clinical significance and pharmacological implications. Pharmacological Research, 2022, 180, 106249.	3.1	3