
Takahiro Watanabe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5865043/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PD-L1 upregulation by lytic induction of Epstein-Barr Virus. Virology, 2022, 568, 31-40.	2.4	8
2	Epstein–Barr virus tegument protein BGLF2 in exosomes released from virus-producing cells facilitates de novo infection. Cell Communication and Signaling, 2022, 20, .	6.5	9
3	Comprehensive Analyses of Intraviral Epstein-Barr Virus Protein–Protein Interactions Hint Central Role of BLRF2 in the Tegument Network. Journal of Virology, 2022, 96, .	3.4	3
4	Role of Epstein–Barr Virus C Promoter Deletion in Diffuse Large B Cell Lymphoma. Cancers, 2021, 13, 561.	3.7	9
5	Oncolytic activity of naturally attenuated herpes-simplex virus HF10 against an immunocompetent model of oral carcinoma. Molecular Therapy - Oncolytics, 2021, 20, 220-227.	4.4	6
6	RNAseq analysis identifies involvement of EBNA2 in PD-L1 induction during Epstein-Barr virus infection of primary B cells. Virology, 2021, 557, 44-54.	2.4	18
7	Deletion of Viral microRNAs in the Oncogenesis of Epstein–Barr Virus-Associated Lymphoma. Frontiers in Microbiology, 2021, 12, 667968.	3.5	12
8	A STING inhibitor suppresses EBVâ€induced B cell transformation and lymphomagenesis. Cancer Science, 2021, 112, 5088-5099.	3.9	7
9	Molecular Basis of Epstein–Barr Virus Latency Establishment and Lytic Reactivation. Viruses, 2021, 13, 2344.	3.3	70
10	Oncolytic activity of HF10 in head and neck squamous cell carcinomas. Cancer Gene Therapy, 2020, 27, 585-598.	4.6	16
11	Oncogenesis of CAEBV revealed: Intragenic deletions in the viral genome and leaky expression of lytic genes. Reviews in Medical Virology, 2020, 30, e2095.	8.3	24
12	Direct Evidence of Abortive Lytic Infection-Mediated Establishment of Epstein-Barr Virus Latency During B-Cell Infection. Frontiers in Microbiology, 2020, 11, 575255.	3.5	27
13	Antitumor activity of cyclinâ€dependent kinase inhibitor alsterpaullone in Epsteinâ€Barr virusâ€associated lymphoproliferative disorders. Cancer Science, 2020, 111, 279-287.	3.9	12
14	Defective Epstein–Barr virus in chronic active infection and haematological malignancy. Nature Microbiology, 2019, 4, 404-413.	13.3	152
15	The BOLF1 gene is necessary for effective Epstein–Barr viral infectivity. Virology, 2019, 531, 114-125.	2.4	9
16	Initial Characterization of the Epstein–Barr Virus BSRF1 Gene Product. Viruses, 2019, 11, 285.	3.3	14
17	S-Like-Phase Cyclin-Dependent Kinases Stabilize the Epstein-Barr Virus BDLF4 Protein To Temporally Control Late Gene Transcription. Journal of Virology, 2019, 93, .	3.4	21
18	Epstein-Barr Virus BBRF2 Is Required for Maximum Infectivity. Microorganisms, 2019, 7, 705.	3.6	10

TAKAHIRO WATANABE

#	Article	IF	CITATIONS
19	Antitumor effects of duvelisib on Epstein–Barr virusâ€associated lymphoma cells. Cancer Medicine, 2018, 7, 1275-1284.	2.8	9
20	Epstein-Barr Virus BKRF4 Gene Product Is Required for Efficient Progeny Production. Journal of Virology, 2017, 91, .	3.4	35
21	The Epstein-Barr Virus BRRF1 Gene Is Dispensable for Viral Replication in HEK293 cells and Transformation. Scientific Reports, 2017, 7, 6044.	3.3	9
22	The C-Terminus of Epstein-Barr Virus BRRF2 Is Required for its Proper Localization and Efficient Virus Production. Frontiers in Microbiology, 2017, 8, 125.	3.5	7
23	Characterization of a Suppressive Cis-acting Element in the Epstein–Barr Virus LMP1 Promoter. Frontiers in Microbiology, 2017, 8, 2302.	3.5	3
24	Induction of Epstein-Barr Virus Oncoprotein LMP1 by Transcription Factors AP-2 and Early B Cell Factor. Journal of Virology, 2016, 90, 3873-3889.	3.4	14
25	Tofacitinib induces G1 cell-cycle arrest and inhibits tumor growth in Epstein-Barr virus-associated T and natural killer cell lymphoma cells. Oncotarget, 2016, 7, 76793-76805.	1.8	32
26	A Herpesvirus Specific Motif of Epstein-Barr Virus DNA Polymerase Is Required for the Efficient Lytic Genome Synthesis. Scientific Reports, 2015, 5, 11767.	3.3	10
27	The heat shock protein 90 inhibitor BIIB021 suppresses the growth of T and natural killer cell lymphomas. Frontiers in Microbiology, 2015, 6, 280.	3.5	17
28	Roles of Epstein-Barr virus BGLF3.5 gene and two upstream open reading frames in lytic viral replication in HEK293 cells. Virology, 2015, 483, 44-53.	2.4	11
29	The Epstein–Barr virus BRRF2 gene product is involved in viral progeny production. Virology, 2015, 484, 33-40.	2.4	13
30	The Epstein-Barr Virus BDLF4 Gene Is Required for Efficient Expression of Viral Late Lytic Genes. Journal of Virology, 2015, 89, 10120-10124.	3.4	24
31	EBV Exploits RNA m6A Modification to Promote Cell Survival and Progeny Virus Production During Lytic Cycle. Frontiers in Microbiology, 0, 13, .	3.5	11