Martin Claussen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/586503/publications.pdf

Version: 2024-02-01

128 papers 12,610 citations

41323 49 h-index 27389 106 g-index

167 all docs

167
docs citations

times ranked

167

10420 citing authors

#	Article	IF	CITATIONS
1	Climate and carbon cycle changes from 1850 to 2100 in MPlâ€ESM simulations for the Coupled Model Intercomparison Project phase 5. Journal of Advances in Modeling Earth Systems, 2013, 5, 572-597.	1.3	1,280
2	Developments in the MPlâ€M Earth System Model version 1.2 (MPlâ€ESM1.2) and Its Response to Increasing CO ₂ . Journal of Advances in Modeling Earth Systems, 2019, 11, 998-1038.	1.3	582
3	Simulation of an abrupt change in Saharan vegetation in the Mid-Holocene. Geophysical Research Letters, 1999, 26, 2037-2040.	1.5	510
4	A reconstruction of global agricultural areas and land cover for the last millennium. Global Biogeochemical Cycles, 2008, 22, .	1.9	475
5	Earth system models of intermediate complexity: closing the gap in the spectrum of climate system models. Climate Dynamics, 2002, 18, 579-586.	1.7	411
6	Simulation of modern and glacial climates with a coupled global model of intermediate complexity. Nature, 1998, 391, 351-356.	13.7	403
7	CLIMBER-2: a climate system model of intermediate complexity. Part I: model description and performance for present climate. Climate Dynamics, 2000, 16, 1-17.	1.7	367
8	The Influence of Vegetation-Atmosphere-Ocean Interaction on Climate During the Mid-Holocene. Science, 1998, 280, 1916-1919.	6.0	360
9	Effect of Anthropogenic Land-Use and Land-Cover Changes on Climate and Land Carbon Storage in CMIP5 Projections for the Twenty-First Century. Journal of Climate, 2013, 26, 6859-6881.	1.2	329
10	Impact of soil moistureâ€climate feedbacks on CMIP5 projections: First results from the GLACEâ€CMIP5 experiment. Geophysical Research Letters, 2013, 40, 5212-5217.	1.5	314
11	Carbon cycle, vegetation, and climate dynamics in the Holocene: Experiments with the CLIMBER-2 model. Global Biogeochemical Cycles, 2002, 16, 86-1-86-20.	1.9	302
12	The Max Planck Institute Grand Ensemble: Enabling the Exploration of Climate System Variability. Journal of Advances in Modeling Earth Systems, 2019, 11, 2050-2069.	1.3	288
13	The Greening of the Sahara during the Mid-Holocene: Results of an Interactive Atmosphere-Biome Model. Global Ecology and Biogeography Letters, 1997, 6, 369.	0.6	287
14	Climate and carbon-cycle variability over the last millennium. Climate of the Past, 2010, 6, 723-737.	1.3	284
15	Biogeophysical versus biogeochemical feedbacks of large-scale land cover change. Geophysical Research Letters, 2001, 28, 1011-1014.	1.5	279
16	Global biogeophysical interactions between forest and climate. Geophysical Research Letters, 2009, 36,	1.5	273
17	Role of land cover changes for atmospheric CO2 increase and climate change during the last 150 years. Global Change Biology, 2004, 10, 1253-1266.	4.2	244
18	Coherent high- and low-latitude control of the northwest African hydrological balance. Nature Geoscience, 2008, 1, 670-675.	5.4	233

#	Article	IF	CITATIONS
19	Nonlinearities, Feedbacks and Critical Thresholds within the Earth's Climate System. Climatic Change, 2004, 65, 11-38.	1.7	229
20	On the stability of the atmosphere-vegetation system in the Sahara/Sahel region. Journal of Geophysical Research, 1998, 103, 31613-31624.	3.3	225
21	Biogeophysical effects of historical land cover changes simulated by six Earth system models of intermediate complexity. Climate Dynamics, 2006, 26, 587-600.	1.7	220
22	CLIMBER-2: a climate system model of intermediate complexity. Part II: model sensitivity. Climate Dynamics, 2001, 17, 735-751.	1.7	196
23	Catalogue of abrupt shifts in Intergovernmental Panel on Climate Change climate models. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5777-86.	3.3	182
24	Modeling bio-geophysical feedback in the African and Indian monsoon region. Climate Dynamics, 1997, 13, 247-257.	1.7	173
25	Simulation of the last glacial cycle with a coupled climate ice-sheet model of intermediate complexity. Climate of the Past, 2010, 6, 229-244.	1.3	156
26	Modelling climate response to historical land cover change. Global Ecology and Biogeography, 1999, 8, 509-517.	2.7	153
27	Combined biogeophysical and biogeochemical effects of large-scale forest cover changes in the MPI earth system model. Biogeosciences, 2010, 7, 1383-1399.	1.3	144
28	Estimation of areally-averaged surface fluxes. Boundary-Layer Meteorology, 1991, 54, 387-410.	1.2	139
29	Mid-Holocene greening of the Sahara: first results of the GAIM 6000 year BP Experiment with two asynchronously coupled atmosphere/biome models. Climate Dynamics, 2000, 16, 643-659.	1.7	137
30	Evaluation of vegetation cover and landâ€surface albedo in <scp>MPI</scp> â€ <scp>ESM CMIP5</scp> simulations. Journal of Advances in Modeling Earth Systems, 2013, 5, 48-57.	1.3	130
31	Transient simulation of the last glacial inception. Part I: glacial inception as a bifurcation in the climate system. Climate Dynamics, 2005, 24, 545-561.	1.7	121
32	Synergy between small- and large-scale feedbacks of vegetation on the water cycle. Global Change Biology, 2005, 11, 1003-1012.	4.2	118
33	On coupling global biome models with climate models. Climate Research, 1994, 4, 203-221.	0.4	117
34	On multiple solutions of the atmosphere–vegetation system in presentâ€day climate. Global Change Biology, 1998, 4, 549-559.	4.2	111
35	Climate Change in Northern Africa: The Past is Not the Future. Climatic Change, 2003, 57, 99-118.	1.7	109
36	Modelling global terrestrial vegetation–climate interaction. Philosophical Transactions of the Royal Society B: Biological Sciences, 1998, 353, 53-63.	1.8	103

#	Article	IF	CITATIONS
37	Geoengineering climate by stratospheric sulfur injections: Earth system vulnerability to technological failure. Climatic Change, 2009, 92, 243-259.	1.7	99
38	Area-averaging of surface fluxes in a neutrally stratified, horizontally inhomogeneous atmospheric boundary layer. Atmospheric Environment Part A General Topics, 1990, 24, 1349-1360.	1.3	96
39	EMIC Intercomparison Project (EMIP–CO2): comparative analysis of EMIC simulations of climate, and of equilibrium and transient responses to atmospheric CO2 doubling. Climate Dynamics, 2005, 25, 363-385.	1.7	96
40	Asian irrigation, African rain: Remote impacts of irrigation. Geophysical Research Letters, 2016, 43, 3737-3745.	1.5	93
41	Simulation of the global bio-geophysical interactions during the Last Glacial Maximum. Climate Dynamics, 1998, 14, 461-471.	1.7	90
42	Late Quaternary vegetation-climate feedbacks. Climate of the Past, 2009, 5, 203-216.	1.3	74
43	Simulated climate–vegetation interaction in semi-arid regions affected by plant diversity. Nature Geoscience, 2013, 6, 954-958.	5.4	71
44	Global temperature modes shed light on the Holocene temperature conundrum. Nature Communications, 2020, 11, 4726.	5.8	71
45	Comparison of the last interglacial climate simulated by a coupled global model of intermediate complexity and an AOGCM. Climate Dynamics, 2000, 16, 799-814.	1.7	62
46	Transient simulation of the last glacial inception. Part II: sensitivity and feedback analysis. Climate Dynamics, 2005, 24, 563-576.	1.7	62
47	Past abrupt changes, tipping points and cascading impacts in the Earth system. Nature Geoscience, 2021, 14, 550-558.	5.4	62
48	Simulated global-scale response of the climate system to Dansgaard/Oeschger and Heinrich events. Climate Dynamics, 2003, 21, 361-370.	1.7	58
49	International Geosphere–Biosphere Programme and Earth system science: Three decades of co-evolution. Anthropocene, 2015, 12, 3-16.	1.6	57
50	Biomes computed from simulated climatologies. Climate Dynamics, 1994, 9, 235-243.	1.7	56
51	The effect of a dynamic background albedo scheme on Sahel/Sahara precipitation during the mid-Holocene. Climate of the Past, 2011, 7, 117-131.	1.3	56
52	Local ecosystem feedbacks and critical transitions in the climate. Ecological Complexity, 2011, 8, 223-228.	1.4	54
53	Contribution of oceanic and vegetation feedbacks to Holocene climate change in monsoonal Asia. Climate of the Past, 2010, 6, 195-218.	1.3	53
54	Coupled climateâ€"carbon simulations indicate minor global effects of wars and epidemics on atmospheric CO ₂ between <scp>ad</scp> 800 and 1850. Holocene, 2011, 21, 843-851.	0.9	48

#	Article	IF	Citations
55	Quantifying the effect of vegetation dynamics on the climate of the Last Glacial Maximum. Climate of the Past, 2005, 1 , 1 -7.	1.3	46
56	Flux aggregation at large scales: on the limits of validity of the concept of blending height. Journal of Hydrology, 1995, 166, 371-382.	2.3	45
57	Analysis of rainfall records: possible relation to self-organized criticality. Physica A: Statistical Mechanics and Its Applications, 1998, 254, 557-568.	1.2	44
58	Implications of climate variability for the detection of multiple equilibria and for rapid transitions in the atmosphere-vegetation system. Climate Dynamics, 2012, 38, 1775-1790.	1.7	43
59	The end of the African humid period as seen by a transient comprehensive Earth system model simulation of the last 8000 years. Climate of the Past, 2020, 16, 117-140.	1.3	41
60	On multiple solutions of the atmosphere-vegetation system in present-day climate. Global Change Biology, 1998, 4, 549-559.	4.2	41
61	Theory and Modeling of the African Humid Period and the Green Sahara. , 2017, , .		41
62	Spatial variability of Holocene changes in the annual precipitation pattern: a model-data synthesis for the Asian monsoon region. Climate Dynamics, 2013, 40, 2919-2936.	1.7	37
63	Earth system models: a test using the mid-Holocene in the Southern Hemisphere. Quaternary Science Reviews, 2002, 21, 819-824.	1.4	35
64	Contribution of anthropogenic land cover change emissions to pre-industrial atmospheric CO ₂ . Tellus, Series B: Chemical and Physical Meteorology, 2022, 62, 329.	0.8	34
65	Strength of forest-albedo feedback in mid-Holocene climate simulations. Climate of the Past, 2011, 7, 1027-1039.	1.3	34
66	Did Humankind Prevent a Holocene Glaciation?. Climatic Change, 2005, 69, 409-417.	1.7	33
67	The influence of land cover change in the Asian monsoon region on present-day and mid-Holocene climate. Biogeosciences, 2011, 8, 1499-1519.	1.3	33
68	On the momentum forcing of a large-scale sea-ice model. Climate Dynamics, 1993, 9, 71-80.	1.7	32
69	Landscape variability and surface flux parameterization in climate models. Agricultural and Forest Meteorology, 1995, 73, 181-188.	1.9	32
70	Sensitivity of the last glacial inception to initial and surface conditions. Climate Dynamics, 2006, 27, 333-344.	1.7	32
71	Local advection processes in the surface layer of the marginal ice zone. Boundary-Layer Meteorology, 1991, 54, 1-27.	1.2	31
72	Mechanisms and time scales of glacial inception simulated with an Earth system model of intermediate complexity. Climate of the Past, 2009, 5, 245-258.	1.3	29

#	Article	IF	CITATIONS
73	The flow in a turbulent boundary layer upstream of a change in surface roughness. Boundary-Layer Meteorology, 1987, 40, 31-86.	1.2	28
74	The influence of vegetation dynamics on anthropogenic climate change. Earth System Dynamics, 2012, 3, 233-243.	2.7	27
75	The impact of sub-grid scale sea-ice inhomogeneities on the performance of the atmospheric general circulation model ECHAM3. Climate Dynamics, 1996, 12, 477-496.	1.7	26
76	Impact of CO<sub>2</sub> and climate on Last Glacial maximum vegetation $\hat{a} \in \hat{a}$ a factor separation. Biogeosciences, 2013, 10, 3593-3604.	1.3	26
77	The evolution of sub-monsoon systems in the Afro-Asian monsoon region during the Holocene– comparison of different transient climate model simulations. Climate of the Past, 2015, 11, 305-326.	1.3	25
78	The link between marine sediment records and changes in Holocene Saharan landscape: simulating the dust cycle. Climate of the Past, 2016, 12, 1009-1027.	1.3	24
79	What was the source of the atmospheric CO ₂ increase during the Holocene?. Biogeosciences, 2019, 16, 2543-2555.	1.3	24
80	Simulated climate variability in the region of Rapa Nui during the last millennium. Climate of the Past, 2011, 7, 579-586.	1.3	23
81	Environmental change during MIS4 and MIS 3 opened corridors in the Horn of Africa for Homo sapiens expansion. Quaternary Science Reviews, 2018, 202, 139-153.	1.4	23
82	Harmonising plant functional type distributions for evaluating Earth system models. Climate of the Past, 2019, 15, 335-366.	1.3	23
83	Holocene vegetation transitions and their climatic drivers in MPI-ESM1.2. Climate of the Past, 2021, 17, 2481-2513.	1.3	23
84	A model of turbulence spectra in the atmospheric surface layer. Boundary-Layer Meteorology, 1985, 33, 151-172.	1.2	21
85	CO2-Induced Sahel Greening in Three CMIP5 Earth System Models. Journal of Climate, 2014, 27, 7163-7184.	1.2	21
86	Rapid increase in simulated North Atlantic dust deposition due to fast change of northwest African landscape during the Holocene. Climate of the Past, 2018, 14, 1051-1066.	1.3	21
87	The climate of a retrograde rotating Earth. Earth System Dynamics, 2018, 9, 1191-1215.	2.7	21
88	Estimation of regional heat and moisture fluxes in homogeneous terrain with bluff roughness elements. Journal of Hydrology, 1995, 166, 353-369.	2.3	19
89	Biome changes in Asia since the mid-Holocene – an analysis of different transient Earth system model simulations. Climate of the Past, 2017, 13, 107-134.	1.3	19
90	Variability of global biome patterns as a function of initial and boundary conditions in a climate model. Climate Dynamics, 1996, 12, 371-379.	1.7	18

#	Article	IF	CITATIONS
91	Biomes computed from simulated climatologies. Climate Dynamics, 1994, 9, 235-243.	1.7	16
92	The ICON Earth System Model Version 1.0. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	16
93	Detecting hotspots of atmosphere–vegetation interaction via slowing down – Part 1: A stochastic approach. Earth System Dynamics, 2013, 4, 63-78.	2.7	15
94	Models of eddy viscosity for numerical simulation of horizontally inhomogeneous, neutral surface-layer flow. Boundary-Layer Meteorology, 1988, 42, 337-369.	1.2	13
95	Climate variabilityâ€induced uncertainty in midâ€Holocene atmosphereâ€oceanâ€vegetation feedbacks. Geophysical Research Letters, 2009, 36, .	1.5	12
96	Holocene vegetation and biomass changes on the Tibetan Plateau $\hat{a} \in \text{``a model-pollen data comparison.}$ Climate of the Past, 2011, 7, 881-901.	1.3	12
97	Title is missing!. Environmental Modeling and Assessment, 1999, 4, 209-216.	1.2	11
98	Earth system model simulations show different feedback strengths of the terrestrial carbon cycle under glacial and interglacial conditions. Earth System Dynamics, 2018, 9, 413-425.	2.7	11
99	Plant functional diversity affects climate–vegetation interaction. Biogeosciences, 2018, 15, 1947-1968.	1.3	10
100	On the inner-layer scale height of boundary-layer flow over low hills. Boundary-Layer Meteorology, 1988, 44, 411-413.	1.2	9
101	Could gradual changes in Holocene Saharan landscape have caused the observed abrupt shift in North Atlantic dust deposition?. Earth and Planetary Science Letters, 2017, 473, 104-112.	1.8	9
102	Background albedo dynamics improve simulated precipitation variability in the Sahel region. Earth System Dynamics, 2014, 5, 89-101.	2.7	8
103	The Nexus of Climate Change, Land Use, and Conflict: Complex Human–Environment Interactions in Northern Africa. Bulletin of the American Meteorological Society, 2015, 96, 1561-1564.	1.7	8
104	Sahel Rainfall–Tropical Easterly Jet Relationship on Synoptic to Intraseasonal Time Scales. Monthly Weather Review, 2019, 147, 1733-1752.	0.5	7
105	Modification of blending procedure in a proposed new PBL Resistance Law. Boundary-Layer Meteorology, 1994, 68, 201-205.	1.2	5
106	Impact of surface parameter uncertainties on the development of a trough in the Fram Strait region. Tellus, Series A: Dynamic Meteorology and Oceanography, 2010, 62, 377-392.	0.8	5
107	Detecting hotspots of atmosphere–vegetation interaction via slowing down – Part 2: Application to a global climate model. Earth System Dynamics, 2013, 4, 79-93.	2.7	5
108	Palaeo plant diversity in subtropical Africa – ecological assessment of a conceptual model of climate–vegetation interaction. Climate of the Past, 2015, 11, 1361-1374.	1.3	5

#	Article	IF	Citations
109	Transitivity of the climate–vegetation system in a warm climate. Climate of the Past, 2015, 11, 1563-1574.	1.3	5
110	Surface-layer similarity in turbulent circular Couette flow. Journal of Fluid Mechanics, 1984, 144, 123-131.	1.4	4
111	Estimation of the Monin-Obukhov similarity functions from a spectral model. Boundary-Layer Meteorology, 1985, 33, 233-243.	1.2	4
112	KlimaĤderungen: MĶgliche Ursachen in Vergangenheit und Zukunft. Environmental Sciences Europe, 2003, 15, 21-30.	0.1	4
113	39. Modelling the end of an interglacial (MIS 1, 5, 7, 9, 11). Developments in Quaternary Sciences, 2007, 7, 583-593.	0.1	4
114	Radiative forcing and feedback by forests in warm climates – a sensitivity study. Earth System Dynamics, 2016, 7, 535-547.	2.7	4
115	Simulated range of mid-Holocene precipitation changes from extended lakes and wetlands over North Africa. Climate of the Past, 2022, 18, 1035-1046.	1.3	4
116	On extension of Malkus' theory of turbulence to stably stratified shear flow. Boundary-Layer Meteorology, 1983, 27, 209-215.	1.2	3
117	Neutral surface-layer flow over isolated roughness strips. Boundary-Layer Meteorology, 1989, 48, 431-442.	1.2	3
118	1. Introduction to climate forcing and climate feedbacks. Developments in Quaternary Sciences, 2007, 7, 3-11.	0.1	3
119	Two drastically different climate states on an Earth-like terra-planet. Earth System Dynamics, 2018, 9, 739-756.	2.7	3
120	Influence of the representation of convection on the mid-Holocene West African Monsoon. Climate of the Past, 2021, 17, 1665-1684.	1.3	3
121	40. Chronology and climate forcing of the last four interglacials. Developments in Quaternary Sciences, 2007, 7, 597-614.	0.1	2
122	Preface "Climate change: from the geological past to the uncertain future – a symposium honouring André Berger". Climate of the Past, 2009, 5, 707-711.	1.3	2
123	Hans Ertel and potential vorticity a century of geophysical fluid dynamics. Meteorologische Zeitschrift, 2004, 13, 451-451.	0.5	1
124	Hidden glacial carbon. Nature Geoscience, 2012, 5, 6-7.	5.4	1
125	Implications of land use change in tropical northern Africa under global warming. Earth System Dynamics, 2015, 6, 769-780.	2.7	1
126	Simple tipping or complex transition? Lessons from a green Sahara. Past Global Change Magazine, 2016, 24, 20-21.	0.4	1

#	Article	IF	CITATIONS
127	Corrigendum to Preface "Climate change: from the geological past to the uncertain future – a symposium honouring André Berger" published in Clim. Past, 5, 707–711, 2009. Climate of the Past, 2009, 5, 723-723.	1.3	0
128	Effect of nitrogen limitation and soil biophysics on Holocene greening of the Sahara. Climate of the Past, 2022, 18, 313-326.	1.3	0