
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5864822/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Using Whole-Cell Electrophysiology and Patch-Clamp Photometry to Characterize P2X7 Receptor Currents. Methods in Molecular Biology, 2022, , 217-237.	0.4	1
2	Physiology of Cultured Human Microglia Maintained in a Defined Culture Medium. ImmunoHorizons, 2021, 5, 257-272.	0.8	6
3	Ca2+ flux through splice variants of the ATP-gated ionotropic receptor P2X7 is regulated by its cytoplasmic N terminus. Journal of Biological Chemistry, 2019, 294, 12521-12533.	1.6	17
4	ATP-Gated P2X7 Receptors Require Chloride Channels To Promote Inflammation in Human Macrophages. Journal of Immunology, 2019, 202, 883-898.	0.4	32
5	Synthesis and in vitro characterization of a P2X7 radioligand [1231]TZ6019 and its response to neuroinflammation in a mouse model of Alzheimer disease. European Journal of Pharmacology, 2018, 820, 8-17.	1.7	37
6	P2X receptor overexpression induced by soluble oligomers of amyloid beta peptide potentiates synaptic failure and neuronal dyshomeostasis in cellular models of Alzheimer's disease. Neuropharmacology, 2018, 128, 366-378.	2.0	34
7	A central role for P2X7 receptors in human microglia. Journal of Neuroinflammation, 2018, 15, 325.	3.1	59
8	P2X Receptors. , 2018, , .		0
9	CLIC1 null mice demonstrate a role for CLIC1 in macrophage superoxide production and tissue injury. Physiological Reports, 2017, 5, e13169.	0.7	15
10	Pharmacologic characterizations of a P2X7 receptor-specific radioligand, [11C]GSK1482160 for neuroinflammatory response. Nuclear Medicine Communications, 2017, 38, 372-382.	0.5	57
11	Sorting Nexin 11 Regulates Lysosomal Degradation of Plasma Membrane <scp>TRPV3</scp> . Traffic, 2016, 17, 500-514.	1.3	15
12	HSP90 Regulation of P2X7 Receptor Function Requires an Intact Cytoplasmic C-Terminus. Molecular Pharmacology, 2016, 90, 116-126.	1.0	16
13	Quantifying Ca2+ Current and Permeability in ATP-gated P2X7 Receptors. Journal of Biological Chemistry, 2015, 290, 7930-7942.	1.6	33
14	Engagement of the GABA to KCC2 Signaling Pathway Contributes to the Analgesic Effects of A ₃ AR Agonists in Neuropathic Pain. Journal of Neuroscience, 2015, 35, 6057-6067.	1.7	68
15	Principles and properties of ion flow in P2X receptors. Frontiers in Cellular Neuroscience, 2014, 8, 6.	1.8	83
16	Imaging P2X4 receptor subcellular distribution, trafficking, and regulation using P2X4-pHluorin. Journal of General Physiology, 2014, 144, 81-104.	0.9	39
17	Allosteric Modulation of Ca2+ flux in Ligand-gated Cation Channel (P2X4) by Actions on Lateral Portals. Journal of Biological Chemistry, 2012, 287, 7594-7602.	1.6	32
18	Calcium-dependent decrease in the single-channel conductance of TRPV1. Pflugers Archiv European Journal of Physiology, 2011, 462, 681-691.	1.3	26

#	Article	IF	CITATIONS
19	Preferential use of unobstructed lateral portals as the access route to the pore of human ATP-gated ion channels (P2X receptors). Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13800-13805.	3.3	70
20	P2X4 receptors in activated C8-B4 cells of cerebellar microglial origin. Journal of General Physiology, 2010, 135, 333-353.	0.9	85
21	Pannexin 1 is the conduit for low oxygen tension-induced ATP release from human erythrocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H1146-H1152.	1.5	161
22	P2X4 receptors in activated C8-B4 cells of cerebellar microglial origin. Journal of Cell Biology, 2010, 189, i7-i7.	2.3	0
23	Native and recombinant ASIC1a receptors conduct negligible Ca2+ entry. Cell Calcium, 2009, 45, 319-325.	1.1	56
24	The CDK domain of p21 is a suppressor of ILâ€1βâ€mediated inflammation in activated macrophages. European Journal of Immunology, 2009, 39, 820-825.	1.6	59
25	Tunable Calcium Current through TRPV1 Receptor Channels. Journal of Biological Chemistry, 2008, 283, 31274-31278.	1.6	33
26	On the Role of the First Transmembrane Domain in Cation Permeability and Flux of the ATP-gated P2X2 Receptor. Journal of Biological Chemistry, 2008, 283, 5110-5117.	1.6	36
27	Acidic Amino Acids Impart Enhanced Ca2+ Permeability and Flux in Two Members of the ATP-gated P2X Receptor Family. Journal of General Physiology, 2007, 129, 245-256.	0.9	58
28	Functional expression of mammalian receptors and membrane channels in different cells. Journal of Structural Biology, 2007, 159, 179-193.	1.3	37
29	Biophysics of P2X receptors. Pflugers Archiv European Journal of Physiology, 2006, 452, 501-512.	1.3	118
30	Contribution of Transmembrane Regions to ATP-gated P2X2 Channel Permeability Dynamics. Journal of Biological Chemistry, 2005, 280, 6118-6129.	1.6	60
31	Molecular Structure of P2X Receptors. Current Topics in Medicinal Chemistry, 2004, 4, 821-829.	1.0	43
32	Contribution of Calcium Ions to P2X Channel Responses. Journal of Neuroscience, 2004, 24, 3413-3420.	1.7	263
33	Gain and Loss of Channel Function by Alanine Substitutions in the Transmembrane Segments of the Rat ATP-Gated P2X2 Receptor. Journal of Neuroscience, 2004, 24, 7378-7386.	1.7	49
34	Molecular characterization of the zebrafish P2X receptor subunit gene family. Neuroscience, 2003, 121, 935-945.	1.1	73
35	Relating the Structure of ATP-Gated Ion Channel Receptors to Their Function. Current Topics in Membranes, 2003, 54, 183-202.	0.5	1
36	Cloning and characterization of two novel zebrafish P2X receptor subunits. Biochemical and Biophysical Research Communications, 2002, 295, 849-853.	1.0	35

#	Article	IF	CITATIONS
37	On the Contribution of the First Transmembrane Domain to Whole-Cell Current through an ATP-Gated Ionotropic P2X Receptor. Journal of Neuroscience, 2001, 21, 5885-5892.	1.7	47
38	Polar Residues of the Second Transmembrane Domain Influence Cation Permeability of the ATP-gated P2X2 Receptor. Journal of Biological Chemistry, 2001, 276, 30934-30941.	1.6	84
39	The First Transmembrane Domain of the P2X Receptor Subunit Participates in the Agonist-induced Gating of the Channel. Journal of Biological Chemistry, 2001, 276, 32793-32798.	1.6	48
40	Molecular cloning and functional characterization of the zebrafish ATP-gated ionotropic receptor P2X3 subunit. FEBS Letters, 2000, 475, 287-290.	1.3	27
41	Identification of a Domain Involved in ATP-gated Ionotropic Receptor Subunit Assembly. Journal of Biological Chemistry, 1999, 274, 22359-22365.	1.6	65
42	Hetero-oligomeric Assembly of P2X Receptor Subunits. Journal of Biological Chemistry, 1999, 274, 6653-6659.	1.6	373
43	Neuropeptide Y receptors involved in calcium channel regulation in PC12 cells. Regulatory Peptides, 1998, 75-76, 101-107.	1.9	15
44	Topological analysis of the ATP-gated ionotrophic P2X2receptor subunit. FEBS Letters, 1998, 425, 19-23.	1.3	64
45	N-Linked Glycosylation Is Essential for the Functional Expression of the Recombinant P2X2Receptorâ€. Biochemistry, 1998, 37, 14845-14851.	1.2	58
46	A Domain Contributing to the Ion Channel of ATP-Gated P2X ₂ Receptors Identified by the Substituted Cysteine Accessibility Method. Journal of Neuroscience, 1998, 18, 2350-2359.	1.7	130
47	Neuropeptide Y inhibition of calcium channels in PC-12 pheochromocytoma cells. American Journal of Physiology - Cell Physiology, 1998, 274, C1290-C1297.	2.1	29
48	Co-Expression of P2X1 and P2X5 Receptor Subunits Reveals a Novel ATP-Gated Ion Channel. Molecular Pharmacology, 1998, 54, 989-993.	1.0	140
49	ECG phenomenon called the J wave. Journal of Electrocardiology, 1995, 28, 49-58.	0.4	140
50	Local control of excitation ontraction coupling in rat heart cells Journal of Physiology, 1994, 474, 463-471.	1.3	248
51	Processes that remove calcium from the cytoplasm during excitationâ€contraction coupling in intact rat heart cells Journal of Physiology, 1994, 474, 447-462.	1.3	96
52	Properties and modulation of a calcium-activated potassium channel in rat olfactory bulb neurons. Journal of Neurophysiology, 1993, 69, 1433-1442.	0.9	46
53	Na+-activated K+ channels are widely distributed in rat CNS and in Xenopus oocytes. Brain Research, 1992, 584, 319-321.	1.1	52
54	Properties and rundown of sodium-activated potassium channels in rat olfactory bulb neurons. Journal of Neuroscience, 1992, 12, 1964-1976.	1.7	70

#	Article	IF	CITATIONS
55	Sodium alcium exchange during the action potential in guineaâ€pig ventricular cells Journal of Physiology, 1989, 411, 639-661.	1.3	154
56	Chapter 6 Single cell studies of the actions of agonists and antagonists on nicotinic receptors of the central nervous system. Progress in Brain Research, 1989, 79, 73-83.	0.9	5
57	On the mechanism of isoprenaline―and forskolinâ€induced depolarization of single guineaâ€pig ventricular myocytes Journal of Physiology, 1988, 400, 299-320.	1.3	70
58	An isoprenaline activated sodium-dependent inward current in ventricular myocytes. Nature, 1987, 328, 634-637.	13.7	52
59	Acetylcholine and the mammalian 'slow inward' current : a computer investigation. Proceedings of the Royal Society of London Series B, Containing Papers of A Biological Character, 1987, 230, 315-337.	1.8	30
60	Actions of acetylcholine and nicotine on rat locus coeruleus neurons in vitro. Neuroscience, 1986, 19, 565-571.	1.1	171
61	Acetylcholine hyperpolarizes central neurones by acting on an M2 muscarinic receptor. Nature, 1986, 319, 405-407.	13.7	195
62	Acetylcholine acts on m ₂ â€nuscarinic receptors to excite rat locus coeruleus neurones. British Journal of Pharmacology, 1985, 85, 733-735.	2.7	258
63	Membrane properties of rat locus coeruleus neurones. Neuroscience, 1984, 13, 137-156.	1.1	322
64	Noradrenalineâ€mediated synaptic inhibition in rat locus coeruleus neurones Journal of Physiology, 1983, 345, 477-488.	1.3	195
65	ACTIONS AND DISTRIBUTIONS OF OPIOID PEPTIDES IN PERIPHERAL TISSUES. British Medical Bulletin, 1983, 39, 71-75.	2.7	68
66	ELECTROPHYSIOLOGY OF PEPTIDES IN THE PERIPHERAL NERVOUS SYSTEM. British Medical Bulletin, 1982, 38, 291-296.	2.7	17
67	Enkephalin opens potassium channels on mammalian central neurones. Nature, 1982, 299, 74-77.	13.7	265
68	Both mu and delta opiate receptors exist on the same neuron. Science, 1981, 214, 923-924.	6.0	95
69	P2X Receptors. , 0, , 458-485.		3