
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5864752/publications.pdf Version: 2024-02-01

HIDORI NISHIDA

#	Article	IF	CITATIONS
1	Developmental biology of the larvacean <i>Oikopleura dioica</i> : Genome resources, functional screening, and imaging. Development Growth and Differentiation, 2022, 64, 67-82.	0.6	2
2	3D reconstruction of structures of hatched larva and young juvenile of the larvacean Oikopleura dioica using SBF-SEM. Scientific Reports, 2021, 11, 4833.	1.6	16
3	Massive Gene Loss and Function Shuffling in Appendicularians Stretch the Boundaries of Chordate Wnt Family Evolution. Frontiers in Cell and Developmental Biology, 2021, 9, 700827.	1.8	12
4	Germline development during embryogenesis of the larvacean, Oikopleura dioica. Developmental Biology, 2021, 481, 188-200.	0.9	0
5	ANISEED 2019: 4D exploration of genetic data for an extended range of tunicates. Nucleic Acids Research, 2020, 48, D668-D675.	6.5	30
6	Protein phosphatase 2A is essential to maintain meiotic arrest, and to prevent Ca2+ burst at spawning and eventual parthenogenesis in the larvacean Oikopleura dioica. Developmental Biology, 2020, 460, 155-163.	0.9	6
7	A genome database for a Japanese population of the larvacean Oikopleura dioica. Development Growth and Differentiation, 2020, 62, 450-461.	0.6	13
8	Mouth opening is mediated by separation of dorsal and ventral daughter cells of the lip precursor cells in the larvacean, Oikopleura dioica. Development Genes and Evolution, 2020, 230, 315-327.	0.4	8
9	A chordate species lacking <i>Nodal</i> utilizes calcium oscillation and <i>Bmp</i> for left–right patterning. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4188-4198.	3.3	14
10	Expression and Functional Analyses of Ectodermal Transcription Factors FoxJ-r, SoxF, and SP8/9 in Early Embryos of the Ascidian Halocynthia roretzi. Zoological Science, 2020, 38, 26-35.	0.3	0
11	Conservation of peripheral nervous system formation mechanisms in divergent ascidian embryos. ELife, 2020, 9, .	2.8	8
12	Wavy movements of epidermis monocilia drive the neurula rotation that determines left–right asymmetry in ascidian embryos. Developmental Biology, 2019, 448, 173-182.	0.9	7
13	Vitelline membrane proteins promote left-sided nodal expression after neurula rotation in the ascidian, Halocynthia roretzi. Developmental Biology, 2019, 449, 52-61.	0.9	4
14	ANISEED 2017: extending the integrated ascidian database to the exploration and evolutionary comparison of genome-scale datasets. Nucleic Acids Research, 2018, 46, D718-D725.	6.5	90
15	Control of Pem protein level by localized maternal factors for transcriptional regulation in the germline of the ascidian, Halocynthia roretzi. PLoS ONE, 2018, 13, e0196500.	1.1	5
16	Wnt evolution and function shuffling in liberal and conservative chordate genomes. Genome Biology, 2018, 19, 98.	3.8	34
17	Eccentric position of the germinal vesicle and cortical flow during oocyte maturation specify the animal-vegetal axis of ascidian embryos. Development (Cambridge), 2017, 144, 897-904.	1.2	2
18	Asymmetric and Unequal Cell Divisions in Ascidian Embryos. Results and Problems in Cell Differentiation, 2017, 61, 261-284.	0.2	6

#	Article	IF	CITATIONS
19	DNA interference-mediated screening of maternal factors in the chordate Oikopleura dioica. Scientific Reports, 2017, 7, 44226.	1.6	8
20	Patterning and morphogenesis of the intricate but stereotyped oikoplastic epidermis of the appendicularian, Oikopleura dioica. Developmental Biology, 2017, 428, 245-257.	0.9	21
21	Modified whole-mount in situ hybridisation and immunohistochemistry protocols without removal of the vitelline membrane in the appendicularian Oikopleura dioica. Development Genes and Evolution, 2017, 227, 367-374.	0.4	10
22	Genome-wide survey of miRNAs and their evolutionary history in the ascidian, Halocynthia roretzi. BMC Genomics, 2017, 18, 314.	1.2	13
23	Internal and external morphology of adults of the appendicularian, Oikopleura dioica: an SEM study. Cell and Tissue Research, 2017, 367, 213-227.	1.5	19
24	ANISEED 2015: a digital framework for the comparative developmental biology of ascidians. Nucleic Acids Research, 2016, 44, D808-D818.	6.5	68
25	Redundant mechanisms are involved in suppression of default cell fates during embryonic mesenchyme and notochord induction in ascidians. Developmental Biology, 2016, 416, 162-172.	0.9	4
26	Guidelines for the nomenclature of genetic elements in tunicate genomes. Genesis, 2015, 53, 1-14.	0.8	59
27	Maternal and zygotic transcriptomes in the appendicularian, Oikopleura dioica: novel protein-encoding genes, intra-species sequence variations, and trans-spliced RNA leader. Development Genes and Evolution, 2015, 225, 149-159.	0.4	23
28	DNA interference: DNA-induced gene silencing in the appendicularian <i>Oikopleura dioica</i> . Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150435.	1.2	20
29	REGULATOR: a database of metazoan transcription factors and maternal factors for developmental studies. BMC Bioinformatics, 2015, 16, 114.	1.2	13
30	Polarization of PI3K Activity Initiated by Ooplasmic Segregation Guides Nuclear Migration in the Mesendoderm. Developmental Cell, 2015, 35, 333-343.	3.1	12
31	Transcription factor <scp>T</scp> bx6 plays a central role in fate determination between mesenchyme and muscle in embryos of the ascidian, <i><scp>H</scp>alocynthia roretzi</i> . Development Growth and Differentiation, 2014, 56, 310-322.	0.6	15
32	Long-distance cell migration during larval development in the appendicularian, Oikopleura dioica. Developmental Biology, 2014, 395, 299-306.	0.9	23
33	Cell Lineages and Fate Maps in Tunicates: Conservation and Modification. Zoological Science, 2014, 31, 645.	0.3	30
34	Control of the number of cell division rounds in distinct tissues during ascidian embryogenesis. Development Growth and Differentiation, 2014, 56, 376-386.	0.6	4
35	Regulation of the Number of Cell Division Rounds by Tissue-Specific Transcription Factors and Cdk Inhibitor during Ascidian Embryogenesis. PLoS ONE, 2014, 9, e90188.	1.1	11
36	RNA interference in the appendicularian Oikopleura dioica reveals the function of the Brachyury gene. Development Genes and Evolution, 2013, 223, 261-267.	0.4	31

#	Article	IF	CITATIONS
37	The maternal muscle determinant in the ascidian egg. Wiley Interdisciplinary Reviews: Developmental Biology, 2012, 1, 425-433.	5.9	7
38	Cytoplasmic localization and reorganization in ascidian eggs: role of <i>postplasmic/PEM</i> RNAs in axis formation and fate determination. Wiley Interdisciplinary Reviews: Developmental Biology, 2012, 1, 501-518.	5.9	22
39	Neurula rotation determines left-right asymmetry in ascidian tadpole larvae. Development (Cambridge), 2012, 139, 1467-1475.	1.2	32
40	Simple Procedure for Sperm Cryopreservation in the Larvacean Tunicate Oikopleura dioica. Zoological Science, 2011, 28, 8.	0.3	9
41	Tissue-specific regulation of the number of cell division rounds by inductive cell interaction and transcription factors during ascidian embryogenesis. Developmental Biology, 2011, 355, 313-323.	0.9	14
42	Poloâ€like kinase 1 is required for localization of Posterior End Mark protein to the centrosomeâ€attracting body and unequal cleavages in ascidian embryos. Development Growth and Differentiation, 2011, 53, 76-87.	0.6	6
43	A Maternal Factor Unique to Ascidians Silences the Germline via Binding to P-TEFb and RNAP II Regulation. Current Biology, 2011, 21, 1308-1313.	1.8	52
44	The transcription factor FoxB mediates temporal loss of cellular competence for notochord induction in ascidian embryos. Development (Cambridge), 2011, 138, 2591-2600.	1.2	11
45	The transcription factor FoxB mediates temporal loss of cellular competence for notochord induction in ascidian embryos. Development (Cambridge), 2011, 138, 3091-3091.	1.2	0
46	Spatial and temporal expression of two transcriptional isoforms of Lhx3, a LIM class homeobox gene, during embryogenesis of two phylogenetically remote ascidians, Halocynthia roretzi and Ciona intestinalis. Gene Expression Patterns, 2010, 10, 98-104.	0.3	9
47	Dual mechanism controls asymmetric spindle position in ascidian germ cell precursors. Development (Cambridge), 2010, 137, 2011-2021.	1.2	50
48	Plasticity of Animal Genome Architecture Unmasked by Rapid Evolution of a Pelagic Tunicate. Science, 2010, 330, 1381-1385.	6.0	251
49	Segregation of Germ Layer Fates by Nuclear Migration-Dependent Localization of Not mRNA. Developmental Cell, 2010, 19, 589-598.	3.1	40
50	Macho-1 regulates unequal cell divisions independently of its function as a muscle determinant. Developmental Biology, 2010, 344, 284-292.	0.9	13
51	Wnt5 is required for notochord cell intercalation in the ascidian <i>Halocynthia roretzi</i> . Biology of the Cell, 2009, 101, 645-659.	0.7	21
52	Actin microfilaments guide the polarized transport of nuclear pore complexes and the cytoplasmic dispersal of Vasa mRNA during GVBD in the ascidian Halocynthia roretzi. Developmental Biology, 2009, 330, 377-388.	0.9	22
53	Patterning of an ascidian embryo along the anterior–posterior axis through spatial regulation of competence and induction ability by maternally localized PEM. Developmental Biology, 2009, 331, 78-88.	0.9	23
54	Cleavage pattern, gastrulation, and neurulation in the appendicularian, Oikopleura dioica. Development Genes and Evolution, 2008, 218, 69-79.	0.4	41

#	Article	IF	CITATIONS
55	Euro chordates: Ascidian community swims ahead. The 4th International Tunicate meeting in Villefranche sur Mer. Developmental Dynamics, 2008, 237, 1207-1213.	0.8	5
56	Development of the appendicularian <i>Oikopleura dioica</i> : Culture, genome, and cell lineages. Development Growth and Differentiation, 2008, 50, S239-56.	0.6	64
57	Ascidians and the Plasticity of the Chordate Developmental Program. Current Biology, 2008, 18, R620-R631.	1.8	112
58	Cortical and cytoplasmic flows driven by actin microfilaments polarize the cortical ER-mRNA domain along the a–v axis in ascidian oocytes. Developmental Biology, 2008, 313, 682-699.	0.9	37
59	Cell fate polarization in ascidian mesenchyme/muscle precursors by directed FGF signaling and role for an additional ectodermal FGF antagonizing signal in notochord/nerve cord precursors. Development (Cambridge), 2007, 134, 1509-1518.	1.2	38
60	Direct activation by Ets and Zic is required for initial expression of the Brachyury gene in the ascidian notochord. Developmental Biology, 2007, 306, 870-882.	0.9	48
61	Ascidian embryonic development: An emerging model system for the study of cell fate specification in chordates. Developmental Dynamics, 2007, 236, 1732-1747.	0.8	78
62	Nuclear accumulation of β-catenin and transcription of downstream genes are regulated by zygotic Wnt5α and maternal Dsh in ascidian embryos. Developmental Dynamics, 2007, 236, 1570-1582.	0.8	31
63	Localized PEM mRNA and Protein Are Involved in Cleavage-Plane Orientation and Unequal Cell Divisions in Ascidians. Current Biology, 2007, 17, 1014-1025.	1.8	74
64	Brain induction in ascidian embryos is dependent on juxtaposition of FGF9/16/20-producing and -receiving cells. Development Genes and Evolution, 2007, 217, 177-188.	0.4	8
65	FGF9/16/20 and Wnt-5α signals are involved in specification of secondary muscle fate in embryos of the ascidian, Halocynthia roretzi. Development Genes and Evolution, 2007, 217, 515-527.	0.4	16
66	Overlapping expression of FoxA and Zic confers responsiveness to FGF signaling to specify notochord in ascidian embryos. Developmental Biology, 2006, 300, 770-784.	0.9	58
67	The functional analysis of Type I postplasmic/PEM mRNAs in embryos of the ascidian Halocynthia roretzi. Development Genes and Evolution, 2006, 216, 69-80.	0.4	22
68	POPK-1/Sad-1 kinase is required for the proper translocation of maternal mRNAs and putative germ plasm at the posterior pole of the ascidian embryo. Development (Cambridge), 2005, 132, 4731-4742.	1.2	31
69	Macho-1 functions as transcriptional activator for muscle formation in embryos of the ascidian Halocynthia roretzi. Gene Expression Patterns, 2005, 5, 429-437.	0.3	37
70	Specification of embryonic axis and mosaic development in ascidians. Developmental Dynamics, 2005, 233, 1177-1193.	0.8	146
71	Regulation of NF-κB/Rel by lκB is essential for ascidian notochord formation. Developmental Biology, 2005, 277, 80-91.	0.9	18
72	Tracing cell fate in brain formation during embryogenesis of the ascidian Halocynthia roretzi. Development Growth and Differentiation, 2004, 46, 163-180.	0.6	48

#	Article	IF	CITATIONS
73	Ets-mediated brain induction in embryos of the ascidian Halocynthia roretzi. Development Genes and Evolution, 2004, 214, 1-9.	0.4	14
74	Blastomere Isolation and Transplantation. Methods in Cell Biology, 2004, 74, 243-271.	0.5	11
75	Localization and expression pattern of type I postplasmic mRNAs in embryos of the ascidian Halocynthia roretzi. Gene Expression Patterns, 2003, 3, 71-75.	0.3	33
76	Spatio-temporal pattern of MAP kinase activation in embryos of the ascidian Halocynthia roretzi. Development Growth and Differentiation, 2003, 45, 27-37.	0.6	32
77	An Ets transcription factor, HrEts, is target of FGF signaling and involved in induction of notochord, mesenchyme, and brain in ascidian embryos. Developmental Biology, 2003, 261, 25-38.	0.9	62
78	Suppression of macho-1-directed muscle fate by FGF and BMP is required for formation of posterior endoderm in ascidian embryos. Development (Cambridge), 2003, 130, 3205-3216.	1.2	29
79	Maternal macho-1 is an intrinsic factor that makes cell response to the same FGF signal differ between mesenchyme and notochord induction in ascidian embryos. Development (Cambridge), 2003, 130, 5179-5190.	1.2	56
80	Maternal mRNAs of PEM and macho 1, the ascidian muscle determinant, associate and move with a rough endoplasmic reticulum network in the egg cortex. Development (Cambridge), 2003, 130, 5839-5849.	1.2	71
81	Expression Pattern and Transcriptional Control ofSoxB1in Embryos of the Ascidian Halocynthia roretzi. Zoological Science, 2003, 20, 59-67.	0.3	32
82	Analysis of Cell Fate Specification during Ascidian Early Embryogenesis. Zoological Science, 2003, 20, 1495-1496.	0.3	0
83	Specification of developmental fates in ascidian embryos: Molecular approach to maternal determinants and signaling molecules. International Review of Cytology, 2002, 217, 227-276.	6.2	65
84	Patterning the marginal zone of early ascidian embryos: localized maternal mRNA and inductive interactions. BioEssays, 2002, 24, 613-624.	1.2	51
85	Isolation of cDNA clones for mRNAs transcribed zygotically during cleavage in the ascidian, Halocynthia roretzi. Development Genes and Evolution, 2002, 212, 30-37.	0.4	11
86	macho-1-related genes in Ciona embryos. Development Genes and Evolution, 2002, 212, 87-92.	0.4	66
87	HrNodal , the ascidian nodal -related gene, is expressed in the left side of the epidermis, and lies upstream of HrPitx. Development Genes and Evolution, 2002, 212, 439-446.	0.4	76
88	Notch signaling is involved in nervous system formation in ascidian embryos. Development Genes and Evolution, 2002, 212, 459-472.	0.4	49
89	Repression of Zygotic Gene Expression in the Putative Germline Cells in Ascidian Embryos. Zoological Science, 2002, 19, 49-55.	0.3	32
90	Nuclear Plasticity and Timing Mechanisms of the Initiation of Alkaline Phosphatase Expression in Cytoplasm-Transferred Blastomeres of Ascidians. Developmental Biology, 2001, 234, 510-520.	0.9	1

#	Article	IF	CITATIONS
91	The BMP/CHORDIN Antagonism Controls Sensory Pigment Cell Specification and Differentiation in the Ascidian Embryo. Developmental Biology, 2001, 236, 271-288.	0.9	111
92	A Large-Scale Whole-Mountin situHybridization System: Rapid One-Tube Preparation of DIG-Labeled RNA Probes and High Throughput Hybridization using 96-Well Silent Screen Plates. Zoological Science, 2001, 18, 187-193.	0.3	42
93	Role of the FGF and MEK signaling pathway in the ascidian embryo. Development Growth and Differentiation, 2001, 43, 521-533.	0.6	88
94	macho-1 encodes a localized mRNA in ascidian eggs that specifies muscle fate during embryogenesis. Nature, 2001, 409, 724-729.	13.7	236
95	Binary specification of nerve cord and notochord cell fates in ascidian embryos. Development (Cambridge), 2001, 128, 2007-2017.	1.2	59
96	Large-scale cDNA analysis of the maternal genetic information in the egg of <i>Halocynthia roretzi</i> for a gene expression catalog of ascidian development. Development (Cambridge), 2001, 128, 2555-2567.	1.2	64
97	The BMP signaling pathway is required together with the FGF pathway for notochord induction in the ascidian embryo. Development (Cambridge), 2001, 128, 2629-2638.	1.2	61
98	Maternal Genetic Information Stored in Fertilized Eggs of the Ascidian, Halocynthia roretzi. , 2001, , 165-177.		0
99	Developmental fates of larval tissues after metamorphosis in the ascidian, Halocynthia roretzi. Development Genes and Evolution, 2000, 210, 55-63.	0.4	78
100	MAGEST: MAboya Gene Expression patterns and Sequence Tags. Nucleic Acids Research, 2000, 28, 133-135.	6.5	36
101	Maternal information and localized maternal mRNAs in eggs and early embryos of the ascidian <i>Halocynthia roretzi</i> . Invertebrate Reproduction and Development, 1999, 36, 41-49.	0.3	9
102	Localization of mitochondrial large ribosomal RNA in the myoplasm of the early ascidian embryo. Development Growth and Differentiation, 1999, 41, 1-8.	0.6	17
103	Duration of competence and inducing capacity of blastomeres in notochord induction during ascidian embryogenesis. Development Growth and Differentiation, 1999, 41, 449-453.	0.6	12
104	Ultrastructural studies on the centrosome-attracting body: Electron-dense matrix and its role in unequal cleavages in ascidian embryos. Development Growth and Differentiation, 1999, 41, 601-609.	0.6	51
105	Distinct parameters are involved in controlling the number of rounds of cell division in each tissue during ascidian embryogenesis. The Journal of Experimental Zoology, 1999, 284, 379-391.	1.4	23
106	1 Maternal Cytoplasmic Factors for Generation of Unique Cleavage Patterns in Animal Embryos. Current Topics in Developmental Biology, 1999, 46, 1-37.	1.0	20
107	The Centrosome-Attracting Body, Microtubule System, and Posterior Egg Cytoplasm Are Involved in Positioning of Cleavage Planes in the Ascidian Embryo. Developmental Biology, 1999, 209, 72-85.	0.9	98
108	Suppression of Muscle Fate by Cellular Interaction Is Required for Mesenchyme Formation during Ascidian Embryogenesis. Developmental Biology, 1999, 214, 9-22.	0.9	42

#	Article	IF	CITATIONS
109	Centrosome-attracting body: A novel structure closely related to unequal cleavages in the ascidian embryo. Development Growth and Differentiation, 1998, 40, 85-95.	0.6	96
110	Maternal and zygotic expression of the endoderm-specific alkaline phosphatase gene in embryos of the ascidian, Halocynthia roretzi. Developmental Biology, 1998, 198, 245-252.	0.9	12
111	Monoclonal Antibodies against Differentiating Mesenchyme Cells in Larvae of the Ascidian Halocynthia roretzi. Zoological Science, 1998, 15, 553-559.	0.3	11
112	Developmental Roles of Nuclear Complex Factors Released during Oocyte Maturation in the Ascidians Halocynthia roretzi and Boltenia villosa. Zoological Science, 1998, 15, 69-76.	0.3	9
113	Monoclonal Antibodies against Differentiating Mesenchyme Cells in Larvae of the Ascidian Halocynthia roretzi Zoological Science, 1998, 15, 553-559.	0.3	10
114	Maternal and Zygotic Expression of the Endoderm-Specific Alkaline Phosphatase Gene in Embryos of the Ascidian,Halocynthia roretzi. Developmental Biology, 1998, 198, 245-252.	0.9	0
115	Cell Fate Specification by Localized Cytoplasmic Determinants and Cell Interactions in Ascidian Embryos. International Review of Cytology, 1997, 176, 245-306.	6.2	81
116	Induction of Trunk Lateral Cells, the Blood Cell Precursors, during Ascidian Embryogenesis. Developmental Biology, 1997, 181, 14-20.	0.9	23
117	Developmental Fates of Larval Tissues after Metamorphosis in AscidianHalocynthia roretzi. Developmental Biology, 1997, 192, 199-210.	0.9	132
118	Cell lineage and timing of fate restriction, determination and gene expression in ascidian embryos. Seminars in Cell and Developmental Biology, 1997, 8, 359-365.	2.3	16
119	Ras is an essential component for notochord formation during ascidian embryogenesis. Mechanisms of Development, 1997, 68, 81-89.	1.7	34
120	Notch homologue from Halocynthia roretzi is preferentially expressed in the central nervous system during ascidian embryogenesis. Development Genes and Evolution, 1997, 207, 371-380.	0.4	22
121	Analysis of the temporal expression of endoderm-specific alkaline phosphatase during development of the ascidian Halocynthia roretzi. Development Growth and Differentiation, 1997, 39, 199-205.	0.6	17
122	Determination at the Last Cell Cycle before Fate Restriction. Zoological Science, 1996, 13, 15-20.	0.3	4
123	Distribution of cytoplasmic determinants in unfertilized eggs of the ascidian Halocynthia roretzi. Development Genes and Evolution, 1996, 206, 297-304.	0.4	20
124	Biochemical Evidence for Membrane-Bound Endoderm-Specific Alkaline Phosphatase in Larvae of the Ascidian, Halocynthia roretzi. FEBS Journal, 1996, 240, 485-489.	0.2	7
125	Induction of Notochord during Ascidian Embryogenesis. Developmental Biology, 1994, 166, 289-299.	0.9	125
126	Developmental potential for tissue differentiation of fully dissociated cells of the ascidian embryo. Roux's Archives of Developmental Biology, 1992, 201, 81-87.	1.2	61

#	Article	IF	CITATIONS
127	Determination of Developmental Fates of Blastomeres in Ascidian Embryos. Development Growth and Differentiation, 1992, 34, 253-262.	0.6	31
128	Cellular and Molecular Mechanisms of Muscle Cell Differentiation in Ascidian Embryos. International Review of Cytology, 1990, , 221-258.	6.2	38
129	Determination and regulation in the pigment cell lineage of the ascidian embryo. Developmental Biology, 1989, 132, 355-367.	0.9	131
130	Cell lineage analysis in ascidian embryos by intracellular injection of a tracer enzyme. Developmental Biology, 1987, 121, 526-541.	0.9	537
131	Cell Division Pattern during Gastrulation of the Ascidian, Halocynthia roretzi. (cell division) Tj ETQq1 1 0.784314 28, 191-201.	rgBT /Ove 0.6	rlock 10 Tf 5 70
132	Cell lineage analysis in ascidian embryos by intracellular injection of a tracer enzyme. Developmental Biology, 1985, 110, 440-454.	0.9	169
133	HISTOSPECIFIC ACETYLCHOLINESTERASE DEVELOPMENT IN QUARTER ASCIDIAN EMBRYOS DERIVED FROM EACH BLASTOMERE PAIR OF THE EIGHT-CELL STAGE. Biological Bulletin, 1985, 168, 239-248.	0.7	22
134	Autonomous muscle cell differentiation in partial ascidian embryos according to the newly verified cell lineages. Developmental Biology, 1984, 104, 322-328.	0.9	43
135	Cell lineage analysis in ascidian embryos by intracellular injection of a tracer enzyme. Developmental Biology, 1983, 99, 382-394.	0.9	186