Antonis Rokas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5864526/publications.pdf

Version: 2024-02-01

244 papers

22,155 citations

72 h-index 135 g-index

323 all docs

323 docs citations

times ranked

323

22783 citing authors

#	Article	IF	CITATIONS
1	The Paleozoic Origin of Enzymatic Lignin Decomposition Reconstructed from 31 Fungal Genomes. Science, 2012, 336, 1715-1719.	12.6	1,424
2	Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature, 2003, 425, 798-804.	27.8	1,366
3	The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature, 2008, 451, 783-788.	27.8	1,006
4	Rare genomic changes as a tool for phylogenetics. Trends in Ecology and Evolution, 2000, 15, 454-459.	8.7	616
5	Inferring ancient divergences requires genes with strong phylogenetic signals. Nature, 2013, 497, 327-331.	27.8	541
6	Dynamics of <i>Pseudomonas aeruginosa</i> genome evolution. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3100-3105.	7.1	492
7	Highly evolvable malaria vectors: The genomes of 16 <i>Anopheles</i> mosquitoes. Science, 2015, 347, 1258522.	12.6	492
8	Repeated morphological evolution through cis-regulatory changes in a pleiotropic gene. Nature, 2006, 440, 1050-1053.	27.8	475
9	Tempo and Mode of Genome Evolution in the Budding Yeast Subphylum. Cell, 2018, 175, 1533-1545.e20.	28.9	445
10	Bayesian Estimation of Concordance among Gene Trees. Molecular Biology and Evolution, 2006, 24, 412-426.	8.9	420
11	Contentious relationships in phylogenomic studies can be driven by a handful of genes. Nature Ecology and Evolution, 2017, 1, 126.	7.8	365
12	Animal Evolution and the Molecular Signature of Radiations Compressed in Time. Science, 2005, 310, 1933-1938.	12.6	357
13	More Genes or More Taxa? The Relative Contribution of Gene Number and Taxon Number to Phylogenetic Accuracy. Molecular Biology and Evolution, 2005, 22, 1337-1344.	8.9	349
14	The Awesome Power of Yeast Evolutionary Genetics: New Genome Sequences and Strain Resources for the <i>Saccharomyces sensu stricto</i> Genus. G3: Genes, Genomes, Genetics, 2011, 1, 11-25.	1.8	348
15	Comparative genomics of biotechnologically important yeasts. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9882-9887.	7.1	302
16	Comparing Bootstrap and Posterior Probability Values in the Four-Taxon Case. Systematic Biology, 2003, 52, 477-487.	5.6	277
17	The Origins of Multicellularity and the Early History of the Genetic Toolkit For Animal Development. Annual Review of Genetics, 2008, 42, 235-251.	7.6	268
18	Novel Information Theory-Based Measures for Quantifying Incongruence among Phylogenetic Trees. Molecular Biology and Evolution, 2014, 31, 1261-1271.	8.9	259

#	Article	IF	CITATIONS
19	Horizontal Transfer of a Large and Highly Toxic Secondary Metabolic Gene Cluster between Fungi. Current Biology, 2011, 21, 134-139.	3.9	253
20	Bushes in the Tree of Life. PLoS Biology, 2006, 4, e352.	5.6	251
21	Regulation of Body Pigmentation by the Abdominal-B Hox Protein and Its Gain and Loss in Drosophila Evolution. Cell, 2006, 125, 1387-1399.	28.9	240
22	ClipKIT: A multiple sequence alignment trimming software for accurate phylogenomic inference. PLoS Biology, 2020, 18, e3001007.	5.6	237
23	Animal mitochondrial DNA recombination revisited. Trends in Ecology and Evolution, 2003, 18, 411-417.	8.7	228
24	A Global Coexpression Network Approach for Connecting Genes to Specialized Metabolic Pathways in Plants. Plant Cell, 2017, 29, 944-959.	6.6	225
25	Phylogenetic and Transcriptomic Analysis of Chemosensory Receptors in a Pair of Divergent Ant Species Reveals Sex-Specific Signatures of Odor Coding. PLoS Genetics, 2012, 8, e1002930.	3.5	192
26	Reconstructing the Backbone of the Saccharomycotina Yeast Phylogeny Using Genome-Scale Data. G3: Genes, Genomes, Genetics, 2016, 6, 3927-3939.	1.8	187
27	Drivers of genetic diversity in secondary metabolic gene clusters within a fungal species. PLoS Biology, 2017, 15, e2003583.	5. 6	187
28	The Evolution of Fungal Metabolic Pathways. PLoS Genetics, 2014, 10, e1004816.	3.5	183
29	Parallel inactivation of multiple GAL pathway genes and ecological diversification in yeasts. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14144-14149.	7.1	182
30	Transcriptome profiling of chemosensory appendages in the malaria vector Anopheles gambiae reveals tissue- and sex-specific signatures of odor coding. BMC Genomics, 2011, 12, 271.	2.8	181
31	The Evolutionary Imprint of Domestication on Genome Variation and Function of the Filamentous Fungus Aspergillus oryzae. Current Biology, 2012, 22, 1403-1409.	3.9	177
32	A genome-scale phylogeny of the kingdom Fungi. Current Biology, 2021, 31, 1653-1665.e5.	3.9	170
33	Non-optimal codon usage is a mechanism to achieve circadian clock conditionality. Nature, 2013, 495, 116-120.	27.8	167
34	Toward a Fully Resolved Fungal Tree of Life. Annual Review of Microbiology, 2020, 74, 291-313.	7.3	156
35	The birth, evolution and death of metabolic gene clusters in fungi. Nature Reviews Microbiology, 2018, 16, 731-744.	28.6	155
36	Remarkably ancient balanced polymorphisms in a multi-locus gene network. Nature, 2010, 464, 54-58.	27.8	147

#	Article	IF	CITATIONS
37	Evaluating Fast Maximum Likelihood-Based Phylogenetic Programs Using Empirical Phylogenomic Data Sets. Molecular Biology and Evolution, 2018, 35, 486-503.	8.9	147
38	Multiple <i>GAL</i> pathway gene clusters evolved independently and by different mechanisms in fungi. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10136-10141.	7.1	144
39	Blood meal-induced changes to antennal transcriptome profiles reveal shifts in odor sensitivities in <i>Anopheles gambiae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8260-8265.	7.1	143
40	Chemoreceptor Evolution in Hymenoptera and Its Implications for the Evolution of Eusociality. Genome Biology and Evolution, 2015, 7, 2407-2416.	2.5	141
41	Benchmarking Next-Generation Transcriptome Sequencing for Functional and Evolutionary Genomics. Molecular Biology and Evolution, 2009, 26, 2731-2744.	8.9	140
42	Collagen IV and basement membrane at the evolutionary dawn of metazoan tissues. ELife, 2017, 6, .	6.0	139
43	Out of Anatolia: longitudinal gradients in genetic diversity support an eastern origin for a circumâ€Mediterranean oak gallwasp Andricus quercustozae. Molecular Ecology, 2003, 12, 2153-2174.	3.9	136
44	Fungal metabolic gene clustersââ,¬â€€aravans traveling across genomes and environments. Frontiers in Microbiology, 2015, 6, 161.	3.5	136
45	The influence of evolutionary history on human health and disease. Nature Reviews Genetics, 2021, 22, 269-283.	16.3	133
46	Risk factors and outcome of pulmonary aspergillosis in critically ill coronavirus disease 2019 patients—a multinational observational study by the European Confederation of Medical Mycology. Clinical Microbiology and Infection, 2022, 28, 580-587.	6.0	133
47	Recurrent Tissue-Specific mtDNA Mutations Are Common in Humans. PLoS Genetics, 2013, 9, e1003929.	3.5	130
48	Harnessing genomics for evolutionary insights. Trends in Ecology and Evolution, 2009, 24, 192-200.	8.7	124
49	Conflicting phylogenetic signals at the base of the metazoan tree. Evolution & Development, 2003, 5, 346-359.	2.0	116
50	Extensive loss of cell-cycle and DNA repair genes in an ancient lineage of bipolar budding yeasts. PLoS Biology, 2019, 17, e3000255.	5.6	116
51	Evidence for a High Frequency of Simultaneous Double-Nucleotide Substitutions. Science, 2000, 287, 1283-1286.	12.6	111
52	Gene Essentiality Analyzed by <i>In Vivo</i> Transposon Mutagenesis and Machine Learning in a Stable Haploid Isolate of <i>Candida albicans</i> MBio, 2018, 9, .	4.1	110
53	Horizontal Transfer and Death of a Fungal Secondary Metabolic Gene Cluster. Genome Biology and Evolution, 2012, 4, 289-293.	2.5	108
54	The triple helix of collagens $\hat{a}\in$ " an ancient protein structure that enabled animal multicellularity and tissue evolution. Journal of Cell Science, 2018, 131, .	2.0	108

#	Article	IF	CITATIONS
55	EVOLUTIONARY SHIFTS BETWEEN HOST OAK SECTIONS AND HOST-PLANT ORGANS IN ANDRICUS GALLWASPS. Evolution; International Journal of Organic Evolution, 2002, 56, 1821-1830.	2.3	107
56	Global Transcriptome Changes Underlying Colony Growth in the Opportunistic Human Pathogen Aspergillus fumigatus. Eukaryotic Cell, 2012, 11, 68-78.	3.4	107
57	A Robust Phylogenomic Time Tree for Biotechnologically and Medically Important Fungi in the Genera <i> Aspergillus < li > and <i> Penicillium < li > . MBio, 2019, 10, .</i></i>	4.1	106
58	Genomics and the making of yeast biodiversity. Current Opinion in Genetics and Development, 2015, 35, 100-109.	3.3	105
59	Leveraging skewed transcript abundance by RNA-Seq to increase the genomic depth of the tree of life. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1476-1481.	7.1	101
60	Embracing Uncertainty in Reconstructing Early Animal Evolution. Current Biology, 2017, 27, R1081-R1088.	3.9	101
61	A Maximum-Likelihood Analysis of Eight Phylogenetic Markers in Gallwasps (Hymenoptera: Cynipidae): Implications for Insect Phylogenetic Studies. Molecular Phylogenetics and Evolution, 2002, 22, 206-219.	2.7	98
62	Frequent and Widespread Parallel Evolution of Protein Sequences. Molecular Biology and Evolution, 2008, 25, 1943-1953.	8.9	98
63	Antennal transcriptome profiles of anopheline mosquitoes reveal human host olfactory specialization in Anopheles gambiae. BMC Genomics, 2013, 14, 749.	2.8	94
64	Biosynthetic gene clusters and the evolution of fungal chemodiversity. Natural Product Reports, 2020, 37, 868-878.	10.3	93
65	Rooting the Animal Tree of Life. Molecular Biology and Evolution, 2021, 38, 4322-4333.	8.9	93
66	In Silico Characterization and Molecular Evolutionary Analysis of a Novel Superfamily of Fungal Effector Proteins. Molecular Biology and Evolution, 2012, 29, 3371-3384.	8.9	90
67	Complete Bacteriophage Transfer in a Bacterial Endosymbiont (Wolbachia) Determined by Targeted Genome Capture. Genome Biology and Evolution, 2011, 3, 209-218.	2.5	89
68	Understanding patterns of genetic diversity in the oak gallwasp Biorhiza pallida: demographic history or a Wolbachia selective sweep?. Heredity, 2001, 87, 294-304.	2.6	86
69	Permanent Genetic Resources added to Molecular Ecology Resources Database 1 October 2009–30 November 2009. Molecular Ecology Resources, 2010, 10, 404-408.	4.8	84
70	Evaluating Ortholog Prediction Algorithms in a Yeast Model Clade. PLoS ONE, 2011, 6, e18755.	2.5	84
71	Transcriptome-wide analysis of small RNA expression in early zebrafish development. Rna, 2012, 18, 915-929.	3.5	84
72	Genome-scale phylogeny and contrasting modes of genome evolution in the fungal phylum Ascomycota. Science Advances, 2020, 6, .	10.3	84

#	Article	IF	Citations
73	What can comparative genomics tell us about species concepts in the genus Aspergillus?. Studies in Mycology, 2007, 59, 11-17.	7.2	83
74	Physical linkage of metabolic genes in fungi is an adaptation against the accumulation of toxic intermediate compounds. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11481-11486.	7.1	82
75	Evolution of the human pathogenic lifestyle in fungi. Nature Microbiology, 2022, 7, 607-619.	13.3	79
76	Extensive Copy Number Variation in Fermentation-Related Genes Among <i>Saccharomyces cerevisiae </i> Vine Strains. G3: Genes, Genomes, Genetics, 2017, 7, 1475-1485.	1.8	77
77	Functional and evolutionary characterization of a secondary metabolite gene cluster in budding yeasts. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11030-11035.	7.1	75
78	Eukaryotic Acquisition of a Bacterial Operon. Cell, 2019, 176, 1356-1366.e10.	28.9	74
79	Lifecycle closure, lineage sorting, and hybridization revealed in a phylogenetic analysis of European oak gallwasps (Hymenoptera: Cynipidae: Cynipini) using mitochondrial sequence data. Molecular Phylogenetics and Evolution, 2003, 26, 36-45.	2.7	73
80	Computing the Internode Certainty and Related Measures from Partial Gene Trees. Molecular Biology and Evolution, 2016, 33, 1606-1617.	8.9	73
81	The function and evolution of the Aspergillus genome. Trends in Microbiology, 2013, 21, 14-22.	7.7	72
82	Examining the Evolution of the Regulatory Circuit Controlling Secondary Metabolism and Development in the Fungal Genus Aspergillus. PLoS Genetics, 2015, 11, e1005096.	3.5	70
83	A Genome-Scale Investigation of How Sequence, Function, and Tree-Based Gene Properties Influence Phylogenetic Inference. Genome Biology and Evolution, 2016, 8, 2565-2580.	2.5	70
84	Horizontally acquired genes in early-diverging pathogenic fungi enable the use of host nucleosides and nucleotides. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4116-4121.	7.1	70
85	Evolutionary instability of CUG-Leu in the genetic code of budding yeasts. Nature Communications, 2018, 9, 1887.	12.8	70
86	PhyKIT: a broadly applicable UNIX shell toolkit for processing and analyzing phylogenomic data. Bioinformatics, 2021, 37, 2325-2331.	4.1	69
87	The molecular origins of multicellular transitions. Current Opinion in Genetics and Development, 2008, 18, 472-478.	3.3	68
88	Evolution of a heavy metal homeostasis/resistance island reflects increasing copper stress in Enterobacteria. Genome Biology and Evolution, 2016, 8, evw031.	2. 5	68
89	Systematic Dissection of the Evolutionarily Conserved WetA Developmental Regulator across a Genus of Filamentous Fungi. MBio, 2018, 9, .	4.1	68
90	Variation and selection on codon usage bias across an entire subphylum. PLoS Genetics, 2019, 15, e1008304.	3.5	68

#	Article	IF	Citations
91	Evidence for loss and reacquisition of alcoholic fermentation in a fructophilic yeast lineage. ELife, 2018, 7, .	6.0	67
92	Evidence for genetic differentiation and variable recombination rates among Dutch populations of the opportunistic human pathogenAspergillus fumigatus. Molecular Ecology, 2012, 21, 57-70.	3.9	65
93	Gestational tissue transcriptomics in term and preterm human pregnancies: a systematic review and meta-analysis. BMC Medical Genomics, 2015, 8, 27.	1.5	65
94	Differential success in northwards range expansion between ecotypes of the marble gallwasp Andricuskollari: a tale of two lifecycles. Molecular Ecology, 2008, 10, 761-778.	3.9	63
95	The diversity and evolution of circadian clock proteins in fungi. Mycologia, 2010, 102, 269-278.	1.9	63
96	Copy Number Variation in Fungi and Its Implications for Wine Yeast Genetic Diversity and Adaptation. Frontiers in Microbiology, 2018, 9, 288.	3.5	63
97	The Molecular Evolution of the p120-Catenin Subfamily and Its Functional Associations. PLoS ONE, 2010, 5, e15747.	2.5	61
98	The phylogeographical clade trade: tracing the impact of human-mediated dispersal on the colonization of northern Europe by the oak gallwasp Andricus kollari. Molecular Ecology, 2007, 16, 2768-2781.	3.9	60
99	An LaeA- and BrlA-Dependent Cellular Network Governs Tissue-Specific Secondary Metabolism in the Human Pathogen Aspergillus fumigatus. MSphere, 2018, 3, .	2.9	58
100	Regulation of Secondary Metabolism by the Velvet Complex Is Temperature-Responsive in <i>Aspergillus</i> . G3: Genes, Genomes, Genetics, 2016, 6, 4023-4033.	1.8	58
101	Fragmentation of an aflatoxinâ€like gene cluster in a forest pathogen. New Phytologist, 2013, 198, 525-535.	7. 3	55
102	Evidence for widespread cryptic sexual generations in apparently purely asexual <i>Andricus </i> gallwasps. Molecular Ecology, 2008, 17, 652-665.	3.9	54
103	Wolbachia as a speciation agent. Trends in Ecology and Evolution, 2000, 15, 44-45.	8.7	53
104	Functional Divergence for Every Paralog. Molecular Biology and Evolution, 2014, 31, 984-992.	8.9	53
105	Nutritional Heterogeneity Among Aspergillus fumigatus Strains Has Consequences for Virulence in a Strain- and Host-Dependent Manner. Frontiers in Microbiology, 2019, 10, 854.	3.5	52
106	Intron insertion as a phylogenetic character: the engrailed homeobox of Strepsiptera does not indicate affinity with Diptera. Insect Molecular Biology, 1999, 8, 527-530.	2.0	51
107	PhyloFisher: A phylogenomic package for resolving eukaryotic relationships. PLoS Biology, 2021, 19, e3001365.	5.6	51
108	Variation Among Biosynthetic Gene Clusters, Secondary Metabolite Profiles, and Cards of Virulence Across <i>Aspergillus</i> Species. Genetics, 2020, 216, 481-497.	2.9	50

#	Article	IF	CITATIONS
109	WetA bridges cellular and chemical development in Aspergillus flavus. PLoS ONE, 2017, 12, e0179571.	2.5	48
110	The incidence and diversity of Wolbachia in gallwasps (Hymenoptera; Cynipidae) on oak. Molecular Ecology, 2002, 11, 1815-1829.	3.9	47
111	Investigation of Aspergillus fumigatus biofilm formation by various "omics―approaches. Frontiers in Microbiology, 2013, 4, 13.	3.5	47
112	Comprehensive RNA profiling of villous trophoblast and decidua basalis in pregnancies complicated by preterm birth following intra-amniotic infection. Placenta, 2016, 44, 23-33.	1.5	47
113	Dynamic Evolution of Nitric Oxide Detoxifying Flavohemoglobins, a Family of Single-Protein Metabolic Modules in Bacteria and Eukaryotes. Molecular Biology and Evolution, 2016, 33, 1979-1987.	8.9	46
114	The Fumagillin Gene Cluster, an Example of Hundreds of Genes under veA Control in Aspergillus fumigatus. PLoS ONE, 2013, 8, e77147.	2.5	45
115	Fungal Isocyanide Synthases and Xanthocillin Biosynthesis in Aspergillus fumigatus. MBio, 2018, 9, .	4.1	44
116	Genomic and Phenotypic Heterogeneity of Clinical Isolates of the Human Pathogens Aspergillus fumigatus, Aspergillus lentulus, and Aspergillus fumigatiaffinis. Frontiers in Genetics, 2020, 11, 459.	2.3	44
117	Phylogenetic Analysis of Protein Sequence Data Using the Randomized Axelerated Maximum Likelihood (<scp>RAXML</scp>) Program. Current Protocols in Molecular Biology, 2011, 96, Unit19.11.	2.9	43
118	Rapid Phenotypic and Metabolomic Domestication of Wild $\mbox{\sc i}\mbox{\sc Penicillium}\mbox{\sc /i}\mbox{\sc Molds}$ on Cheese. MBio, 2019, 10, .	4.1	43
119	Characterizing the Pathogenic, Genomic, and Chemical Traits of <i>Aspergillus fischeri</i> , a Close Relative of the Major Human Fungal Pathogen <i>Aspergillus fumigatus</i> . MSphere, 2019, 4, .	2.9	42
120	Evolving moldy murderers: Aspergillus section Fumigati as a model for studying the repeated evolution of fungal pathogenicity. PLoS Pathogens, 2020, 16, e1008315.	4.7	40
121	Longitudinal range expansion and cryptic eastern species in the western Palaearctic oak gallwasp, Andricus coriarius. Molecular Ecology, 2007, 16, 2103-2114.	3.9	39
122	Repeated loss of an anciently horizontally transferred gene cluster in <i>Botrytis</i> . Mycologia, 2013, 105, 1126-1134.	1.9	39
123	<i>In Silico</i> Whole Genome Sequencer and Analyzer (iWGS): a Computational Pipeline to Guide the Design and Analysis of <i>de novo</i> Genome Sequencing Studies. G3: Genes, Genomes, Genetics, 2016, 6, 3655-3662.	1.8	39
124	Pathogenic Allodiploid Hybrids of Aspergillus Fungi. Current Biology, 2020, 30, 2495-2507.e7.	3.9	39
125	The effect of domestication on the fungal proteome. Trends in Genetics, 2009, 25, 60-63.	6.7	38
126	Transcriptome of the adult female malaria mosquito vector Anopheles albimanus. BMC Genomics, 2012, 13, 207.	2.8	38

#	Article	IF	Citations
127	Quartet-Based Computations of Internode Certainty Provide Robust Measures of Phylogenetic Incongruence. Systematic Biology, 2020, 69, 308-324.	5.6	38
128	Ecology Drives the Distribution of Specialized Tyrosine Metabolism Modules in Fungi. Genome Biology and Evolution, 2014, 6, 121-132.	2.5	37
129	Factors driving metabolic diversity in the budding yeast subphylum. BMC Biology, 2018, 16, 26.	3.8	36
130	Whole exome sequencing reveals HSPA1L as a genetic risk factor for spontaneous preterm birth. PLoS Genetics, 2018, 14, e1007394.	3.5	35
131	Mapping the Fungal Battlefield: Using in situ Chemistry and Deletion Mutants to Monitor Interspecific Chemical Interactions Between Fungi. Frontiers in Microbiology, 2019, 10, 285.	3.5	35
132	Multiple Reinventions of Mating-type Switching during Budding Yeast Evolution. Current Biology, 2019, 29, 2555-2562.e8.	3.9	33
133	Clustering of Two Genes Putatively Involved in Cyanate Detoxification Evolved Recently and Independently in Multiple Fungal Lineages. Genome Biology and Evolution, 2015, 7, 789-800.	2.5	32
134	An investigation of irreproducibility in maximum likelihood phylogenetic inference. Nature Communications, 2020, 11 , 6096.	12.8	32
135	Gliotoxin, a Known Virulence Factor in the Major Human Pathogen Aspergillus fumigatus, Is Also Biosynthesized by Its Nonpathogenic Relative <i>Aspergillus fischeri</i>). MBio, 2020, 11, .	4.1	32
136	Diversity of Secondary Metabolism in Aspergillus nidulans Clinical Isolates. MSphere, 2020, 5, .	2.9	32
137	Functional Characterization of Clinical Isolates of the Opportunistic Fungal Pathogen Aspergillus nidulans. MSphere, 2020, 5, .	2.9	32
138	Divergent and Conserved Elements Comprise the Chemoreceptive Repertoire of the Nonblood-Feeding Mosquito Toxorhynchites amboinensis. Genome Biology and Evolution, 2014, 6, 2883-2896.	2.5	31
139	MybA, a transcription factor involved in conidiation and conidial viability of the human pathogen <i>Aspergillus fumigatus</i> . Molecular Microbiology, 2017, 105, 880-900.	2.5	31
140	Unearthing fungal chemodiversity and prospects for drug discovery. Current Opinion in Microbiology, 2019, 51, 22-29.	5.1	31
141	Genomic and Phenotypic Analysis of COVID-19-Associated Pulmonary Aspergillosis Isolates of Aspergillus fumigatus. Microbiology Spectrum, 2021, 9, e0001021.	3.0	31
142	Into the wild: new yeast genomes from natural environments and new tools for their analysis. FEMS Yeast Research, 2020, 20, .	2.3	29
143	Transcriptomic, Protein-DNA Interaction, and Metabolomic Studies of VosA, VelB, and WetA in Aspergillus nidulans Asexual Spores. MBio, 2021, 12, .	4.1	29
144	Dissecting Incongruence between Concatenation- and Quartet-Based Approaches in Phylogenomic Data. Systematic Biology, 2021, 70, 997-1014.	5.6	28

#	Article	IF	CITATIONS
145	The <i> ASP3 < /i > locus in <i> Saccharomyces cerevisiae < /i > originated by horizontal gene transfer from <i> Wickerhamomyces < /i > . FEMS Yeast Research, 2012, 12, 859-863.</i></i></i>	2.3	27
146	Is preterm birth a human-specific syndrome?. Evolution, Medicine and Public Health, 2015, 2015, 136-148.	2.5	27
147	The Aspergillus fumigatus transcription factor RglT is important for gliotoxin biosynthesis and self-protection, and virulence. PLoS Pathogens, 2020, 16, e1008645.	4.7	27
148	Prevention, diagnosis and treatment of highâ€throughput sequencing data pathologies. Molecular Ecology, 2014, 23, 1679-1700.	3.9	24
149	Genomic features and evolution of the conditionally dispensable chromosome in the tangerine pathotype of <i>Alternaria alternata</i> Molecular Plant Pathology, 2019, 20, 1425-1438.	4.2	23
150	A Bioinformatics Approach for Integrated Transcriptomic and Proteomic Comparative Analyses of Model and Non-sequenced Anopheline Vectors of Human Malaria Parasites. Molecular and Cellular Proteomics, 2013, 12, 120-131.	3.8	21
151	Transcriptional Rewiring: The Proof Is in the Eating. Current Biology, 2007, 17, R626-R628.	3.9	20
152	Comparative and Functional Characterization of Intragenic Tandem Repeats in 10 Aspergillus Genomes. Molecular Biology and Evolution, 2008, 26, 591-602.	8.9	20
153	The evolution of the GALactose utilization pathway in budding yeasts. Trends in Genetics, 2022, 38, 97-106.	6.7	20
154	Comparing human and macaque placental transcriptomes to disentangle preterm birth pathology from gestational age effects. Placenta, 2016, 41, 74-82.	1.5	19
155	The Aspergillus fumigatus Mismatch Repair <i>MSH2</i> Homolog Is Important for Virulence and Azole Resistance. MSphere, 2019, 4, .	2.9	19
156	ggpubfigs: Colorblind-Friendly Color Palettes and ggplot2 Graphic System Extensions for Publication-Quality Scientific Figures. Microbiology Resource Announcements, 2021, 10, e0087121.	0.6	19
157	GENOMICS: Genomics and the Tree of Life. Science, 2006, 313, 1897-1899.	12.6	18
158	Signatures of Recent Positive Selection in Enhancers Across 41 Human Tissues. G3: Genes, Genomes, Genetics, 2019, 9, 2761-2774.	1.8	18
159	Signatures of optimal codon usage in metabolic genes inform budding yeast ecology. PLoS Biology, 2021, 19, e3001185.	5.6	18
160	An evolutionary genomic approach reveals both conserved and species-specific genetic elements related to human disease in closely related <i>Aspergillus</i> fungi. Genetics, 2021, 218, .	2.9	18
161	Repeated horizontal gene transfer of <i>GAL</i> actose metabolism genes violates Dollo's law of irreversible loss. Genetics, 2021, 217, .	2.9	18
162	Selective base excision repair of DNA damage by the nonâ€baseâ€flipping DNA glycosylase AlkC. EMBO Journal, 2018, 37, 63-74.	7.8	17

#	Article	IF	Citations
163	Beyond the Biosynthetic Gene Cluster Paradigm: Genome-Wide Coexpression Networks Connect Clustered and Unclustered Transcription Factors to Secondary Metabolic Pathways. Microbiology Spectrum, 2021, 9, e0089821.	3.0	17
164	Developing a theoretical evolutionary framework to solve the mystery of parturition initiation. ELife, 2020, 9 , .	6.0	17
165	Mammalian pregnancy. Current Biology, 2017, 27, R127-R128.	3.9	16
166	The Impact of Natural Selection on the Evolution and Function of Placentally Expressed Galectins. Genome Biology and Evolution, 2019, 11, 2574-2592.	2.5	16
167	Recurrent Loss of abaA, a Master Regulator of Asexual Development in Filamentous Fungi, Correlates with Changes in Genomic and Morphological Traits. Genome Biology and Evolution, 2020, 12, 1119-1130.	2.5	16
168	Regulation of gliotoxin biosynthesis and protection in Aspergillus species. PLoS Genetics, 2022, 18, e1009965.	3.5	16
169	The diverse applications of RNAâ€seq for functional genomic studies in <i>Aspergillus fumigatus</i> . Annals of the New York Academy of Sciences, 2012, 1273, 25-34.	3.8	15
170	Chlamydomonas reinhardtii LFO1 Is an IsdG Family Heme Oxygenase. MSphere, 2017, 2, .	2.9	15
171	Heterogeneity in the transcriptional response of the human pathogen <i>Aspergillus fumigatus</i> to the antifungal agent caspofungin. Genetics, 2022, 220, .	2.9	15
172	Treehouse: a user-friendly application to obtain subtrees from large phylogenies. BMC Research Notes, 2019, 12, 541.	1.4	14
173	Draft Genome Sequence of the Griseofulvin-Producing Fungus Xylaria flabelliformis Strain G536. Microbiology Resource Announcements, 2019, 8, .	0.6	14
174	Different paths to the same end. Nature, 2006, 443, 401-402.	27.8	13
175	My Oldest Sister Is a Sea Walnut?. Science, 2013, 342, 1327-1329.	12.6	13
176	Accounting for diverse evolutionary forces reveals mosaic patterns of selection on human preterm birth loci. Nature Communications, 2020, 11, 3731.	12.8	13
177	BioKIT: a versatile toolkit for processing and analyzing diverse types of sequence data. Genetics, 2022, 221, .	2.9	13
178	Longitudinal patterns in species richness and genetic diversity in European oaks and oak gallwasps. , 2007, , 127-151.		12
179	Aspergillus. Current Biology, 2013, 23, R187-R188.	3.9	12
180	The transformative potential of an integrative approach to pregnancy. Placenta, 2017, 57, 204-215.	1.5	12

#	Article	IF	Citations
181	orthofisher: a broadly applicable tool for automated gene identification and retrieval. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	12
182	EVOLUTIONARY SHIFTS BETWEEN HOST OAK SECTIONS AND HOST-PLANT ORGANS IN ANDRICUS GALLWASPS. Evolution; International Journal of Organic Evolution, 2002, 56, 1821.	2.3	11
183	Examination of Signatures of Recent Positive Selection on Genes Involved in Human Sialic Acid Biology. G3: Genes, Genomes, Genetics, 2018, 8, 1315-1325.	1.8	11
184	Inverted formin 2 regulates intracellular trafficking, placentation, and pregnancy outcome. ELife, $2018, 7, .$	6.0	11
185	Genome-wide association analysis uncovers variants for reproductive variation across dog breeds and links to domestication. Evolution, Medicine and Public Health, 2019, 2019, 93-103.	2.5	11
186	Aspergillus fumigatus G-Protein Coupled Receptors GprM and GprJ Are Important for the Regulation of the Cell Wall Integrity Pathway, Secondary Metabolite Production, and Virulence. MBio, 2020, 11, .	4.1	11
187	Wheldone: Characterization of a Unique Scaffold from the Coculture of <i>Aspergillus fischeri</i> and <i>Xylaria flabelliformis</i> . Organic Letters, 2020, 22, 1878-1882.	4.6	11
188	Microbiome-associated human genetic variants impact phenome-wide disease risk. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	11
189	Orthogonal Method for Double-Bond Placement via Ozone-Induced Dissociation Mass Spectrometry (OzID-MS). Journal of Natural Products, 2019, 82, 3421-3431.	3.0	10
190	Aspergillus fumigatus Acetate Utilization Impacts Virulence Traits and Pathogenicity. MBio, 2021, 12, e0168221.	4.1	10
191	Examination of Gene Loss in the DNA Mismatch Repair Pathway and Its Mutational Consequences in a Fungal Phylum. Genome Biology and Evolution, 2021, 13, .	2.5	10
192	An orthologous gene coevolution network provides insight into eukaryotic cellular and genomic structure and function. Science Advances, 2022, 8, eabn0105.	10.3	10
193	Two Different Secondary Metabolism Gene Clusters Occupied the Same Ancestral Locus in Fungal Dermatophytes of the Arthrodermataceae. PLoS ONE, 2012, 7, e41903.	2.5	9
194	Integrating Diverse Types of Genomic Data to Identify Genes that Underlie Adverse Pregnancy Phenotypes. PLoS ONE, 2015, 10, e0144155.	2.5	9
195	Structural Biology of the HEATâ€Like Repeat Family of DNA Glycosylases. BioEssays, 2018, 40, e1800133.	2.5	9
196	From Gene-Scale to Genome-Scale Phylogenetics: the Data Flood In, but the Challenges Remain. Methods in Molecular Biology, 2008, 422, 1-12.	0.9	9
197	Enabling precision medicine in neonatology, an integrated repository for preterm birth research. Scientific Data, 2018, 5, 180219.	5.3	9
198	A Genome-Scale Investigation of Incongruence in Culicidae Mosquitoes. Genome Biology and Evolution, 2015, 7, 3463-3471.	2.5	8

#	Article	IF	CITATIONS
199	Gene Selection and Evolutionary Modeling Affect Phylogenomic Inference of Neuropterida Based on Transcriptome Data. International Journal of Molecular Sciences, 2019, 20, 1072.	4.1	8
200	Genome-wide analysis of Fusarium verticillioides reveals inter-kingdom contribution of horizontal gene transfer to the expansion of metabolism. Fungal Genetics and Biology, 2019, 128, 60-73.	2.1	8
201	Examination of Genome-Wide Ortholog Variation in Clinical and Environmental Isolates of the Fungal Pathogen Aspergillus fumigatus. MBio, 2022, 13, .	4.1	8
202	Lining Up to Avoid Bias. Science, 2008, 319, 416-417.	12.6	7
203	Assessing the Genome-Wide Effect of Promoter Region Tandem Repeat Natural Variation on Gene Expression. G3: Genes, Genomes, Genetics, 2012, 2, 1643-1649.	1.8	7
204	Putting Pleiotropy and Selection Into Context Defines a New Paradigm for Interpreting Genetic Data. Circulation: Cardiovascular Genetics, 2013, 6, 299-307.	5.1	7
205	GEneSTATION 1.0: a synthetic resource of diverse evolutionary and functional genomic data for studying the evolution of pregnancy-associated tissues and phenotypes. Nucleic Acids Research, 2016, 44, D908-D916.	14.5	6
206	Immune Regulation in Eutherian Pregnancy: Live Birth Coevolved with Novel Immune Genes and Gene Regulation. BioEssays, 2019, 41, e1900072.	2.5	6
207	Aspergillus nidulans Genome and a Comparative Analysis of Genome Evolution in Aspergillus. Mycology, 2007, , 43-55.	0.5	6
208	Non-productive DNA damage binding by DNA glycosylase-like protein Mag2 from Schizosaccharomyces pombe. DNA Repair, 2013, 12, 196-204.	2.8	5
209	Shared Selective Pressures on Fungal and Human Metabolic Pathways Lead to Divergent yet Analogous Genetic Responses. Molecular Biology and Evolution, 2015, 32, 1449-1455.	8.9	5
210	CTDGFinder: A Novel Homology-Based Algorithm for Identifying Closely Spaced Clusters of Tandemly Duplicated Genes. Molecular Biology and Evolution, 2017, 34, 215-229.	8.9	5
211	Revised Transcriptome-Based Gene Annotation for Aspergillus flavus Strain NRRL 3357. Microbiology Resource Announcements, 2020, 9, .	0.6	5
212	A Bayesian guide to tree felling. Trends in Ecology and Evolution, 2000, 15, 396.	8.7	4
213	Molecular Evolution and Phylogenetics. By M. Nei and S. Kumar. Oxford University Press. 2000. ISBN: 0-19-513584-9 (hbk); 0-19-513585-7 (pbk). xiv+333 pages. Price: £65 (hbk); £32.50 (pbk) Genetical Research 2001, 77, 117-120.	,0.9	4
214	Functional variants of the melanocortin-4 receptor associated with the Odontoceti and Mysticeti suborders of cetaceans. Scientific Reports, 2017, 7, 5684.	3.3	4
215	Draft Genome Sequences of Four <i>Aspergillus</i> Section <i>Fumigati</i> Clinical Strains. Microbiology Resource Announcements, 2020, 9, .	0.6	4
216	Evolutionary biology meets genomics. Trends in Ecology and Evolution, 2001, 16, 15-16.	8.7	3

#	Article	IF	CITATIONS
217	What is a character?. Trends in Ecology and Evolution, 2001, 16, 590.	8.7	3
218	Feature frequency profile-based phylogenies are inaccurate. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31580-31581.	7.1	3
219	Extensive Non-Coding Sequence Divergence Between the Major Human Pathogen Aspergillus fumigatus and its Relatives. Frontiers in Fungal Biology, 0, 3, .	2.0	3
220	Evaluating Rare Amino Acid Substitutions (RGC_CAMs) in a Yeast Model Clade. PLoS ONE, 2014, 9, e92213.	2.5	2
221	integRATE: a desirability-based data integration framework for the prioritization of candidate genes across heterogeneous omics and its application to preterm birth. BMC Medical Genomics, 2018, 11, 107.	1.5	2
222	The power of discussion: Support for women at the fungal Gordon Research Conference. Fungal Genetics and Biology, 2018, 121, 65-67.	2.1	2
223	Examining Signatures of Natural Selection in Antifungal Resistance Genes Across Aspergillus Fungi. Frontiers in Fungal Biology, 2021, 2, .	2.0	2
224	Comparing Bootstrap and Posterior Probability Values in the Four-Taxon Case. Systematic Biology, 2003, 52, 477-487.	5.6	2
225	Future-Proofing Your <i>Microbiology Resource Announcements</i> Reproducibility and Clarity. Microbiology Resource Announcements, 2019, 8, .	0.6	2
226	Resistance-Guided Mining of Bacterial Genotoxins Defines a Family of DNA Glycosylases. MBio, 2022, 13, e0329721.	4.1	2
227	Selfish element wars in a wasp battleground. Trends in Ecology and Evolution, 2001, 16, 277.	8.7	1
228	Getting it right for the wrong reason. Trends in Ecology and Evolution, 2001, 16, 668.	8.7	1
229	182: Signature placental and kidney-specific transcripts in the urinary misfoldome of women with preeclampsia (PE). American Journal of Obstetrics and Gynecology, 2016, 214, S113-S114.	1.3	1
230	Sexual selection driving spider diversification. Trends in Ecology and Evolution, 2002, 17, 304.	8.7	0
231	What determines the direction of evolutionary change?. Trends in Ecology and Evolution, 2004, 19, 287-288.	8.7	0
232	Editorial overview: Genomes and evolution: "Seq-ing―answers in life's genomes. Current Opinion in Genetics and Development, 2015, 35, iv-vi.	3.3	0
233	115: A comprehensive analysis of the human decidual and placental villous transcriptomes in women with preeclampsia (PE) using next generation sequencing (RNA-seq). American Journal of Obstetrics and Gynecology, 2015, 212, S75.	1.3	0
234	274: Next generation sequencing (RNA-seq) of the human decidual and placental villous transcriptomes in intra-amniotic infection (IAI) induced preterm birth (PTB). American Journal of Obstetrics and Gynecology, 2015, 212, S149-S150.	1.3	0

#	Article	IF	CITATIONS
235	Perspective: Systematics in the age of genomics. , 0, , 219-228.		O
236	Best Practices for Successfully Writing and Publishing a Genome Announcement in <i>Microbiology Resource Announcements</i> . Microbiology Resource Announcements, 2020, 9, .	0.6	0
237	Preterm Birth. , 2021, , 6163-6178.		0
238	The gene family that cheats Mendel. ELife, 2017, 6, .	6.0	0
239	Preterm Birth. , 2018, , 1-16.		O
240	Title is missing!. , 2020, 16, e1008645.		0
241	Title is missing!. , 2020, 16, e1008645.		0
242	Title is missing!. , 2020, 16, e1008645.		0
243	Title is missing!. , 2020, 16, e1008645.		O
244	Title is missing!. , 2020, 16, e1008645.		0