
## **Travis Anderson**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5864276/publications.pdf Version: 2024-02-01



TRAVIS ANDERSON

| #  | Article                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Vertical GaN Junction Barrier Schottky Rectifiers by Selective Ion Implantation. IEEE Electron Device<br>Letters, 2017, 38, 1097-1100.                                                             | 3.9 | 136       |
| 2  | Quantifying pulsed laser induced damage to graphene. Applied Physics Letters, 2011, 99, .                                                                                                          | 3.3 | 133       |
| 3  | Reduced Self-Heating in AlGaN/GaN HEMTs Using Nanocrystalline Diamond Heat-Spreading Films. IEEE<br>Electron Device Letters, 2012, 33, 23-25.                                                      | 3.9 | 100       |
| 4  | Control of the in-plane thermal conductivity of ultra-thin nanocrystalline diamond films through the grain and grain boundary properties. Acta Materialia, 2016, 103, 141-152.                     | 7.9 | 97        |
| 5  | GaN-On-Diamond HEMT Technology With T <sub>AVG</sub> = 176°C at P <sub>DC,max</sub> = 56 W/mm<br>Measured by Transient Thermoreflectance Imaging. IEEE Electron Device Letters, 2019, 40, 881-884. | 3.9 | 52        |
| 6  | Symmetric Multicycle Rapid Thermal Annealing: Enhanced Activation of Implanted Dopants in GaN. ECS<br>Journal of Solid State Science and Technology, 2015, 4, P382-P386.                           | 1.8 | 45        |
| 7  | Selective p-type Doping of GaN:Si by Mg Ion Implantation and Multicycle Rapid Thermal Annealing. ECS<br>Journal of Solid State Science and Technology, 2016, 5, P124-P127.                         | 1.8 | 43        |
| 8  | Epitaxial Lift-Off and Transfer of III-N Materials and Devices from SiC Substrates. IEEE Transactions on<br>Semiconductor Manufacturing, 2016, 29, 384-389.                                        | 1.7 | 41        |
| 9  | Nanocrystalline Diamond Integration with III-Nitride HEMTs. ECS Journal of Solid State Science and Technology, 2017, 6, Q3036-Q3039.                                                               | 1.8 | 40        |
| 10 | Improved Vertical GaN Schottky Diodes with Ion Implanted Junction Termination Extension. ECS<br>Journal of Solid State Science and Technology, 2016, 5, Q176-Q178.                                 | 1.8 | 35        |
| 11 | Vertical GaN Junction Barrier Schottky Diodes. ECS Journal of Solid State Science and Technology, 2017, 6, Q10-Q12.                                                                                | 1.8 | 33        |
| 12 | Improvements in the Annealing of Mg Ion Implanted GaN and Related Devices. IEEE Transactions on Semiconductor Manufacturing, 2016, 29, 343-348.                                                    | 1.7 | 30        |
| 13 | High resistivity halide vapor phase homoepitaxial β-Ga2O3 films co-doped by silicon and nitrogen.<br>Applied Physics Letters, 2018, 113, .                                                         | 3.3 | 30        |
| 14 | High-Resolution Thermoreflectance Imaging Investigation of Self-Heating in AlGaN/GaN HEMTs on Si,<br>SiC, and Diamond Substrates. IEEE Transactions on Electron Devices, 2020, 67, 5415-5420.      | 3.0 | 24        |
| 15 | Electrothermal evaluation of thick GaN epitaxial layers and AlGaN/GaN high-electron-mobility transistors on large-area engineered substrates. Applied Physics Express, 2017, 10, 126501.           | 2.4 | 20        |
| 16 | Characterization of a selective AlN wet etchant. Applied Physics Express, 2015, 8, 036501.                                                                                                         | 2.4 | 15        |
| 17 | Degradation of dynamic ON-resistance of AlGaN/GaN HEMTs under proton irradiation. , 2013, , .                                                                                                      |     | 14        |
| 18 | Electrothermal Evaluation of AlGaN/GaN Membrane High Electron Mobility Transistors by Transient<br>Thermoreflectance. IEEE Journal of the Electron Devices Society, 2018, 6, 922-930.              | 2.1 | 14        |

TRAVIS ANDERSON

| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Comparison of AlN Encapsulants for Bulk GaN Multicycle Rapid Thermal Annealing. ECS Journal of<br>Solid State Science and Technology, 2015, 4, P403-P407.                                                                         | 1.8 | 12        |
| 20 | High Voltage GaN Lateral Photoconductive Semiconductor Switches. ECS Journal of Solid State Science and Technology, 2017, 6, S3099-S3102.                                                                                         | 1.8 | 12        |
| 21 | GaN Power Devices – Current Status and Future Directions. Electrochemical Society Interface, 2018, 27, 43-47.                                                                                                                     | 0.4 | 12        |
| 22 | Hyperspectral Electroluminescence Characterization of OFF-State Device Characteristics in Proton<br>Irradiated High Voltage AlGaN/GaN HEMTs. ECS Journal of Solid State Science and Technology, 2016, 5,<br>Q289-Q293.            | 1.8 | 11        |
| 23 | Bilayer graphene by bonding CVD graphene to epitaxial graphene. Journal of Vacuum Science and<br>Technology B:Nanotechnology and Microelectronics, 2012, 30, 03D110.                                                              | 1.2 | 10        |
| 24 | A Tri-Layer PECVD SiN Passivation Process for Improved AlGaN/GaN HEMT Performance. ECS Journal of Solid State Science and Technology, 2017, 6, P58-P61.                                                                           | 1.8 | 10        |
| 25 | Modeling Radiation-Induced Degradation in Top-Gated Epitaxial Graphene Field-Effect-Transistors<br>(FETs). Electronics (Switzerland), 2013, 2, 234-245.                                                                           | 3.1 | 9         |
| 26 | Degradation mechanisms of AlGaN/GaN HEMTs on sapphire, Si, and SiC substrates under proton irradiation. , 2014, , .                                                                                                               |     | 9         |
| 27 | Application of a Focused, Pulsed X-Ray Beam to the Investigation of Single-Event Transients in<br>Al <sub>0.3</sub> Ga <sub>0.7</sub> N/GaN HEMTs. IEEE Transactions on Nuclear Science, 2017, 64, 97-105.                        | 2.0 | 9         |
| 28 | Investigation of Single-Event Transients in AlGaN/GaN MIS-Gate HEMTs Using a Focused X-Ray Beam. IEEE<br>Transactions on Nuclear Science, 2019, 66, 368-375.                                                                      | 2.0 | 9         |
| 29 | Defect Characterization of Multicycle Rapid Thermal Annealing Processed p-GaN for Vertical Power<br>Devices. ECS Journal of Solid State Science and Technology, 2019, 8, P70-P76.                                                 | 1.8 | 9         |
| 30 | Effect of GaN Substrate Properties on Vertical GaN PiN Diode Electrical Performance. Journal of Electronic Materials, 2021, 50, 3013-3021.                                                                                        | 2.2 | 8         |
| 31 | 12.5 kV GaN Super-Heterojunction Schottky Barrier Diodes. IEEE Transactions on Electron Devices, 2021, 68, 5736-5741.                                                                                                             | 3.0 | 8         |
| 32 | Optimizing performance and yield of vertical GaN diodes using wafer scale optical techniques.<br>Scientific Reports, 2022, 12, 658.                                                                                               | 3.3 | 8         |
| 33 | Correlation of the Spatial Variation of Single-Event Transient Sensitivity With Thermoreflectance<br>Thermography in \${ext {Al}}_{x} {ext {Ga}}_{1-x}\$ N/GaN HEMTs. IEEE Transactions on Nuclear<br>Science, 2018, 65, 369-375. | 2.0 | 6         |
| 34 | Temperature and time dependent threshold voltage characterization of AlGaN/GaN high electron<br>mobility transistors. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 2232-2234.                         | 0.8 | 5         |
| 35 | Role of Capping Material and GaN Polarity on Mg Ion Implantation Activation. Physica Status Solidi (A)<br>Applications and Materials Science, 2020, 217, 1900789.                                                                 | 1.8 | 5         |
| 36 | A Study on the Impact of Mid-Gap Defects on Vertical GaN Diodes. IEEE Transactions on Semiconductor<br>Manufacturing, 2020, 33, 546-551.                                                                                          | 1.7 | 5         |

TRAVIS ANDERSON

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Lateral GaN JFET Devices on 200 mm Engineered Substrates for Power Switching Applications. , 2018, , .                                                                                                                             |     | 4         |
| 38 | Lateral GaN JFET Devices on Large Area Engineered Substrates. ECS Journal of Solid State Science and Technology, 2019, 8, Q226-Q229.                                                                                               | 1.8 | 4         |
| 39 | Process Optimization for Selective Area Doping of GaN by Ion Implantation. Journal of Electronic Materials, 2021, 50, 4642-4649.                                                                                                   | 2.2 | 4         |
| 40 | Full thermal characterization of AlGaN/GaN high electron mobility transistors on silicon, silicon<br>carbide, and diamond substrates using a reverse modeling approach. Semiconductor Science and<br>Technology, 2021, 36, 014008. | 2.0 | 4         |
| 41 | High-Temperature Static and Dynamic Characteristics of 4.2-kV GaN Super-Heterojunction p-n Diodes.<br>IEEE Transactions on Electron Devices, 2022, 69, 1912-1917.                                                                  | 3.0 | 4         |
| 42 | Impact of Anode Thickness on Breakdown Mechanisms in Vertical GaN PiN Diodes with Planar Edge<br>Termination. Crystals, 2022, 12, 623.                                                                                             | 2.2 | 4         |
| 43 | Quantifying substrate removal induced electrothermal degradation in AlGaN/GaN HEMTs. , 2017, , .                                                                                                                                   |     | 3         |
| 44 | Reduced Contact Resistance in GaN Using Selective Area Si Ion Implantation. IEEE Transactions on Semiconductor Manufacturing, 2019, 32, 478-482.                                                                                   | 1.7 | 3         |
| 45 | Vertical power devices enabled by bulk GaN substrates. , 2019, , .                                                                                                                                                                 |     | 1         |
| 46 | Vertical GaN junction barrier schottky diodes by Mg implantation and activation annealing. , 2016, , .                                                                                                                             |     | 0         |