
Brigitte Le Magueresse-Battistoni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5863988/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Claudin 11 Deficiency in Mice Results in Loss of the Sertoli Cell Epithelial Phenotype in the Testis1. Biology of Reproduction, 2010, 82, 202-213.	1.2	163
2	A novel Ca2+/calmodulin-dependent protein kinase and a male germ cell-specific calmodulin-binding protein are derived from the same gene Molecular and Cellular Biology, 1991, 11, 3960-3971.	1.1	158
3	Chronic Consumption of Farmed Salmon Containing Persistent Organic Pollutants Causes Insulin Resistance and Obesity in Mice. PLoS ONE, 2011, 6, e25170.	1.1	133
4	Endocrine disrupting chemicals in mixture and obesity, diabetes and related metabolic disorders. World Journal of Biological Chemistry, 2017, 8, 108.	1.7	90
5	<i>In Vitro</i> Effects of Germ Cells on the Secretory Activity of Sertoli Cells Recovered from Rats of Different Ages*. Endocrinology, 1988, 122, 1672-1680.	1.4	85
6	Regulatory identification of BPA as an endocrine disruptor: Context and methodology. Molecular and Cellular Endocrinology, 2018, 475, 4-9.	1.6	83
7	INFLUENCE OF GERM CELLS UPON TRANSFERRIN SECRETION BY RAT SERTOLI CELLS in vitro. Journal of Endocrinology, 1988, 118, R13-R16.	1.2	82
8	Effects of bisphenol A on metabolism and evidences of a mode of action mediated through endocrine disruption. Molecular and Cellular Endocrinology, 2018, 475, 74-91.	1.6	73
9	Study in vitro of the phagocytic function of Sertoli cells in the rat. Cell and Tissue Research, 1991, 264, 589-598.	1.5	72
10	MT1-MMP in rat testicular development and the control of Sertoli cell proMMP-2 activation. Journal of Cell Science, 2001, 114, 2125-2134.	1.2	67
11	Stimulation of rat Sertoli cell secretory activity in vitro by germ cells and residual bodies. Reproduction, 1986, 77, 489-498.	1.1	61
12	Environmental Pollutants and Metabolic Disorders: The Multi-Exposure Scenario of Life. Frontiers in Endocrinology, 2018, 9, 582.	1.5	60
13	Paracrine control of immature Sertoli cells by adult germ cells, in the rat (an in vitro study). Molecular and Cellular Endocrinology, 1988, 58, 65-72.	1.6	59
14	Lowâ€dose food contaminants trigger sexâ€specific, hepatic metabolic changes in the progeny of obese mice. FASEB Journal, 2013, 27, 3860-3870.	0.2	57
15	Tumor necrosis factor alpha stimulates insulin-like growth factor binding protein 3 expression in cultured porcine Sertoli cells Endocrinology, 1996, 137, 296-303.	1.4	53
16	Possible involvement of germ cells in the regulation of oestradiol-17,β and ABP secretion by immature rat sertoli cells (in vitro studies). Biochemical and Biophysical Research Communications, 1986, 141, 861-869.	1.0	48
17	Expression of mRNAs for transforming growth factor-beta receptors in the rat testis Endocrinology, 1995, 136, 2788-2791.	1.4	44
18	Fibroblast growth factor (FGF) 2 and FGF9 mediate mesenchymal–epithelial interactions of peritubular and Sertoli cells in the rat testis. Journal of Endocrinology, 2005, 187, 135-147.	1.2	43

#	Article	IF	CITATIONS
19	Fibroblast growth factor receptor type 1 expression during rat testicular development and its regulation in cultured Sertoli cells Endocrinology, 1994, 135, 2404-2411.	1.4	42
20	Basal membrane remodeling during follicle histogenesis in the rat ovary: contribution of proteinases of the MMP and PA families. Developmental Biology, 2005, 277, 403-416.	0.9	39
21	The Mouse Testis Is the Source of Various Serine Proteases and Serine Proteinase Inhibitors (SERPINs): Serine Proteases and SERPINs Identified in Leydig Cells Are under Gonadotropin Regulation. Endocrinology, 2006, 147, 4374-4383.	1.4	39
22	Evidence for Similar Expression of Protein C Inhibitor and the Urokinase-Type Plasminogen Activator System during Mouse Testis Development. Endocrinology, 2004, 145, 1481-1489.	1.4	36
23	Diethylstilbestrol inhibits the expression of the Steroidogenic Acute Regulatory protein in mouse fetal testis. Molecular and Cellular Endocrinology, 2004, 220, 67-75.	1.6	35
24	Plasminogen Activator Inhibitor-1 Is Expressed in Cultured Rat Sertoli Cells1. Biology of Reproduction, 1998, 59, 591-598.	1.2	34
25	Serine proteases and serine protease inhibitors in testicular physiology: the plasminogen activation system. Reproduction, 2007, 134, 721-729.	1.1	34
26	Organization and Analysis of the Complete Rat Calmodulin- dependent Protein Kinase IV Gene. Journal of Biological Chemistry, 1995, 270, 29507-29514.	1.6	33
27	Evidence that MMP-2 and TIMP-2 are at play in the FSH-induced changes in Sertoli cells. Molecular and Cellular Endocrinology, 2002, 189, 25-35.	1.6	33
28	The effects of an in utero exposure to 2,3,7,8â€ŧetrachloroâ€dibenzoâ€ <i>p</i> â€dioxin on male reproductive function: identification of Ccl5 as a potential marker. Journal of Developmental and Physical Disabilities, 2010, 33, 413-424.	3.6	32
29	Low-dose pollutant mixture triggers metabolic disturbances in female mice leading to common and specific features as compared to a high-fat diet. Journal of Nutritional Biochemistry, 2017, 45, 83-93.	1.9	29
30	Pachytene spermatocytes can achieve meiotic process in vitro. Biochemical and Biophysical Research Communications, 1991, 179, 1115-1121.	1.0	27
31	Tumor Necrosis Factor-α Regulates Plasminogen Activator Inhibitor-1 in Rat Testicular Peritubular Cells*. Endocrinology, 1997, 138, 1097-1105.	1.4	25
32	Metabolic Outcome of Female Mice Exposed to a Mixture of Low-Dose Pollutants in a Diet-Induced Obesity Model. PLoS ONE, 2015, 10, e0124015.	1.1	25
33	In vitro regulation of rat Sertoli cell transferrin expression by tumor necrosis factor α and retinoic acid. Molecular and Cellular Endocrinology, 1999, 148, 163-170.	1.6	24
34	Differential expression of tissue inhibitor of metalloproteinases type 1 (TIMP-1) during mouse gonad development. Developmental Dynamics, 2003, 227, 357-366.	0.8	24
35	Adipose Tissue and Endocrine-Disrupting Chemicals: Does Sex Matter?. International Journal of Environmental Research and Public Health, 2020, 17, 9403.	1.2	23
36	Regulatory and academic studies to derive reference values for human health: The case of bisphenol S. Environmental Research, 2022, 204, 112233.	3.7	22

MACHERECE BATTICTONI

#	Article	IF	CITATIONS
37	In vitro regulation of rat Sertoli cell inhibin messenger RNA levels by transforming growth factor-β1 and tumour necrosis factor α. Journal of Endocrinology, 1995, 146, 501-508.	1.2	20
38	Residual Bodies Stimulate Rat Sertoli Cell Plasminogen Activator Activity. Biochemical and Biophysical Research Communications, 1998, 250, 59-62.	1.0	19
39	Adipose-Tissue-Derived Mesenchymal Stem Cells Mediate PD-L1 Overexpression in the White Adipose Tissue of Obese Individuals, Resulting in T Cell Dysfunction. Cells, 2021, 10, 2645.	1.8	18
40	Gender Differences in Transcriptional Signature of Developing Rat Testes and Ovaries following Embryonic Exposure to 2,3,7,8-TCDD. PLoS ONE, 2012, 7, e40306.	1.1	17
41	Lack of effect on rat testicular organogenesis after in utero exposure to 3-monochloropropane-1,2-diol (3-MCPD). Reproductive Toxicology, 2006, 22, 485-492.	1.3	16
42	A comprehensive survey of the laminins and collagens type IV expressed in mouse Leydig cells and their regulation by LH/hCG. Reproduction, 2008, 135, 479-488.	1.1	16
43	Chronic exposure to a pollutant mixture at low doses led to tissue-specific metabolic alterations in male mice fed standard andÂhigh-fat high-sucrose diet. Chemosphere, 2019, 220, 1187-1199.	4.2	16
44	Endocrine disrupting chemicals and metabolic disorders in the liver: What if we also looked at the female side?. Chemosphere, 2021, 268, 129212.	4.2	16
45	Evidence for estrogeno-mimetic effects of a mixture of low-dose pollutants in a model of ovariectomized mice. Environmental Toxicology and Pharmacology, 2018, 57, 34-40.	2.0	14
46	Lifelong consumption of low-dosed food pollutants and metabolic health. Journal of Epidemiology and Community Health, 2015, 69, 512-515.	2.0	12
47	Plasminogen activator inhibitor-1 regulation in cultured rat peritubular cells by basic fibroblast growth factor and transforming growth factor-alpha Endocrinology, 1996, 137, 4243-4249.	1.4	11
48	Direct and indirect impact of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on adult mouse Leydig cells: An in vitro study. Toxicology Letters, 2011, 207, 251-257.	0.4	11
49	Proteases and Their Cognate Inhibitors of the Serine and Metalloprotease Subclasses, in Testicular Physiology. Advances in Experimental Medicine and Biology, 2009, 636, 133-153.	0.8	11
50	Phenotyping the Claudin 11 Deficiency in Testis: From Histology to Immunohistochemistry. Methods in Molecular Biology, 2011, 763, 223-236.	0.4	11
51	Exposure to pollutants altered glucocorticoid signaling and clock gene expression in female mice. Evidence of tissue- and sex-specificity. Chemosphere, 2021, 262, 127841.	4.2	10
52	Retinoids Induce t-PA Synthesis by C6 Glioma Cells -Role in Tumoral Haemorrhagic Necrosis. Thrombosis and Haemostasis, 1996, 75, 332-338.	1.8	9
53	Tumor Necrosis Factor-Â Regulates Plasminogen Activator Inhibitor-1 in Rat Testicular Peritubular Cells. Endocrinology, 1997, 138, 1097-1105.	1.4	9
54	How to Differentiate General Toxicity-Related Endocrine Effects from Endocrine Disruption: Systematic Review of Carbon Disulfide Data. International Journal of Molecular Sciences, 2022, 23, 3153.	1.8	7

#	Article	IF	CITATIONS
55	Sex-specific metabolic alterations induced by environmental pollutants. Current Opinion in Toxicology, 2018, 8, 1-7.	2.6	5
56	Estrogen withdrawal and replacement differentially target liver and adipose tissues in female mice fed a high-fat high-sucrose diet: impact of a chronic exposure to a low-dose pollutant mixture☆. Journal of Nutritional Biochemistry, 2019, 72, 108211.	1.9	4
57	t-PA-dependent activation of C6 glioma-bound plasminogen: a kinetic study. Fibrinolysis and Proteolysis, 1998, 12, 137-144.	1.1	3
58	Impact of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in adult mouse Leydig cells: An in vitro study. Toxicology Letters, 2011, 205, S38-S39.	0.4	2
59	Synergistic induction of tissue-type plasminogen activator expression by retinoids and cyclic nucleotides in rat C6 glioma cells. Fibrinolysis and Proteolysis, 1998, 12, 71-78.	1.1	1
60	Is the in vitro maturation of germ cells accelerated in co-culture with Sertoli cells?. Molecular and Cellular Endocrinology, 2001, 183, 195.	1.6	1
61	Impact of Estrogen Withdrawal and Replacement in Female Mice along the Intestinal Tract. Comparison of E2 Replacement with the Effect of a Mixture of Low Dose Pollutants. International Journal of Environmental Research and Public Health, 2021, 18, 8685.	1.2	1
62	Impact of chronic exposure to a mixture of food contaminants on the metabolic status associated with obesity. Toxicology Letters, 2011, 205, S42.	0.4	0
63	Alterations in the transcriptome of the developing ovaries and testes following embryonic exposure to 2,3,7,8-TCDD. Toxicology Letters, 2011, 205, S249.	0.4	0