
Ingie Hong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5863738/publications.pdf Version: 2024-02-01

INCLE HONG

#	Article	IF	CITATIONS
1	An ultrasensitive biosensor for high-resolution kinase activity imaging in awake mice. Nature Chemical Biology, 2021, 17, 39-46.	8.0	61
2	An Ultrasensitive PKA Biosensor for Multiâ€modal Kinase Activity Detection and Highâ€Resolution Imaging in Awake Mice. FASEB Journal, 2021, 35, .	0.5	0
3	All-or-none disconnection of pyramidal inputs onto parvalbumin-positive interneurons gates ocular dominance plasticity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	9
4	Visualizing synaptic plasticity in vivo by large-scale imaging of endogenous AMPA receptors. ELife, 2021, 10, .	6.0	33
5	Cortical Synaptic AMPA Receptor Plasticity during Motor Learning. Neuron, 2020, 105, 895-908.e5.	8.1	85
6	GSK-3β activation is required for ZIP-induced disruption of learned fear. Scientific Reports, 2020, 10, 18227.	3.3	3
7	SynGAP isoforms differentially regulate synaptic plasticity and dendritic development. ELife, 2020, 9, .	6.0	60
8	Neonatal Transplantation Confers Maturation of PSC-Derived Cardiomyocytes Conducive to Modeling Cardiomyopathy. Cell Reports, 2017, 18, 571-582.	6.4	90
9	Neuropilin-2/PlexinA3 Receptors Associate with GluA1 and Mediate Sema3F-Dependent Homeostatic Scaling in Cortical Neurons. Neuron, 2017, 96, 1084-1098.e7.	8.1	68
10	Sound tuning of amygdala plasticity in auditory fear conditioning. Scientific Reports, 2016, 6, 31069.	3.3	27
11	Functional Coupling with Cardiac Muscle Promotes Maturation of hPSC-Derived Sympathetic Neurons. Cell Stem Cell, 2016, 19, 95-106.	11.1	91
12	The nutrient sensor OGT in PVN neurons regulates feeding. Science, 2016, 351, 1293-1296.	12.6	124
13	The C9orf72 repeat expansion disrupts nucleocytoplasmic transport. Nature, 2015, 525, 56-61.	27.8	835
14	mGluR2/3 in the Lateral Amygdala is Required for Fear Extinction: Cortical Input Synapses onto the Lateral Amygdala as a Target Site of the mGluR2/3 Action. Neuropsychopharmacology, 2015, 40, 2916-2928.	5.4	16
15	ABA Renewal Involves Enhancements in Both GluA2-Lacking AMPA Receptor Activity and GluA1 Phosphorylation in the Lateral Amygdala. PLoS ONE, 2014, 9, e100108.	2.5	9
16	Group I mGluR-dependent depotentiation in the lateral amygdala does not require the removal of calcium-permeable AMPA receptors. Frontiers in Behavioral Neuroscience, 2014, 8, 269.	2.0	3
17	Large-scale analysis of posttranslational modifications in the hippocampus of patients with Alzheimer's disease using pI shift and label-free quantification without enrichment. Analytical and Bioanalytical Chemistry, 2014, 406, 5433-5446.	3.7	5
18	Quantitative proteomics of auditory fear conditioning. Biochemical and Biophysical Research Communications, 2013, 434, 87-94.	2.1	15

INGIE HONG

#	Article	IF	CITATIONS
19	Quantitative Proteomic Analysis of the Hippocampus in the 5XFAD Mouse Model at Early Stages of Alzheimer's Disease Pathology. Journal of Alzheimer's Disease, 2013, 36, 321-334.	2.6	39
20	GluA1 phosphorylation at serine 831 in the lateral amygdala is required for fear renewal. Nature Neuroscience, 2013, 16, 1436-1444.	14.8	45
21	AMPA receptor exchange underlies transient memory destabilization on retrieval. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8218-8223.	7.1	131
22	Fear conditioning occludes late-phase long-term potentiation at thalamic input synapses onto the lateral amygdala in rat brain slices. Neuroscience Letters, 2012, 506, 121-125.	2.1	8
23	Long-Term Neural Correlates of Reversible Fear Learning in the Lateral Amygdala. Journal of Neuroscience, 2012, 32, 16845-16856.	3.6	55
24	Modulation of fear memory by retrieval and extinction: a clue for memory deconsolidation. Reviews in the Neurosciences, 2011, 22, 205-229.	2.9	11
25	Reversible Plasticity of Fear Memory-Encoding Amygdala Synaptic Circuits Even after Fear Memory Consolidation. PLoS ONE, 2011, 6, e24260.	2.5	22
26	Reactivation of Fear Memory Renders Consolidated Amygdala Synapses Labile. Journal of Neuroscience, 2010, 30, 9631-9640.	3.6	49
27	Extinction of cued fear memory involves a distinct form of depotentiation at cortical input synapses onto the lateral amygdala. European Journal of Neuroscience, 2009, 30, 2089-2099.	2.6	70
28	Amygdala depotentiation and fear extinction. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20955-20960.	7.1	234
29	Blockade of amygdala metabotropic glutamate receptor subtype 1 impairs fear extinction. Biochemical and Biophysical Research Communications, 2007, 355, 188-193.	2.1	75