
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5863708/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Os-Free Fe ₁₂ Ir ₂₀ Re ₂₀ Rh _{20High-Entropy Alloy with Single hcp Structure Including Fe from Late Transition Metals. Materials Transactions, 2022, 63, 7-15.}	gt;Ru <s 0.4</s 	ub>28<
2	Ultra-High Mixing Entropy Alloys with Single bcc, hcp, or fcc Structure in Co–Cr–V–Fe–X (X = Al, Ru,) T Binary Equiatomic Alloys. Materials Transactions, 2022, 63, 835-844.	j ETQq0 0 0.4	0 rgBT /Overlo 3
3	Adsorption of Cs ⁺ Ion into Di- and Tri-Octahedral Vermiculites as Demonstrated by Classical Molecular Dynamics Simulation. Materials Transactions, 2021, 62, 469-478.	0.4	3
4	Beating Thermal Coarsening in Nanoporous Materials via Highâ€Entropy Design. Advanced Materials, 2020, 32, e1906160.	11.1	61
5	Mixing Entropy of Exact Equiatomic High-Entropy Alloys Formed into a Single Phase. Materials Transactions, 2020, 61, 1717-1726.	0.4	12
6	Nanoporous Materials: Beating Thermal Coarsening in Nanoporous Materials via Highâ€Entropy Design (Adv. Mater. 6/2020). Advanced Materials, 2020, 32, 2070044.	11.1	2
7	Critically Percolated States in High-Entropy Alloys with Exact Equi-Atomicity. Materials Transactions, 2019, 60, 330-337. High-Entropy Alloys with Hexagonal Close-Packed Structure in	0.4	11
8	Ir ₂₆ Mo ₂₀ Rh _{22.5} Ru _{20and Ir_{25.5}Mo₂₀Rh₂₀Ru_{25Alloys Designed by Sandwich Strategy for the Valence Electron Concentration of Constituent}}	•	-
9	Elements in the Périodic Chart. Materials Transactions, 2019, 60, 1666-1673. Septenary Zr–Hf–Ti–Al–Co–Ni–Cu high-entropy bulk metallic glasses with centimeter-scale glass-forming ability. Materialia, 2019, 7, 100372.	1.3	32
10	Solid Solutions with bcc, hcp, and fcc Structures Formed in a Composition Line in Multicomponent Ir–Rh–Ru–W–Mo System. Materials Transactions, 2019, 60, 2267-2276.	0.4	31
11	Solid state amorphization of metastable Al0.5TiZrPdCuNi high entropy alloy investigated by high voltage electron microscopy. Materials Chemistry and Physics, 2018, 210, 291-300.	2.0	23
12	Partially-devitrified icosahedral quasicrystalline phase in Ti33.33Zr33.33Hf13.33Ni20 and Zr30Hf30Ni15Cu10Ti15 amorphous alloys with near equi-atomic compositions. Materials Chemistry and Physics, 2018, 210, 245-250.	2.0	7
13	3aA_MI-1Nuclei of BCC Phase in AlTi0.5ZrCuNiPd High Entropy Alloy. Microscopy (Oxford, England), 2018, 67, i25-i25.	0.7	Ο
14	Analysis of strontium in soil and plant samples contaminated during the 2011 Fukushima Daiichi Nuclear Power Plant accident. International Journal of PIXE, 2018, 28, 21-27.	0.4	3
15	Adsorption behavior of Cs+ ions to vermiculite demonstrated by molecular dynamics simulations. International Journal of PIXE, 2018, 28, 1-5.	0.4	2
16	MnFeNiCuPt and MnFeNiCuCo high-entropy alloys designed based on L1 0 structure in Pettifor map for binary compounds. Intermetallics, 2017, 82, 107-115.	1.8	30
17	Stress-Enhanced Transformations from Hypothetical B2 to Stable L1 ₀ and Amorphous to fcc Phases in Fe ₅₀ Ni ₅₀ Binary Alloy by Molecular Dynamic Simulations. Materials Transactions, 2017, 58, 646-654.	0.4	2
18	High-Entropy Alloys Including 3d, 4d and 5d Transition Metals from the Same Group in the Periodic Table. Materials Transactions. 2016, 57, 1197-1201.	0.4	7

#	Article	IF	CITATIONS
19	Investigation on the crystallization mechanism difference between FINEMET® and NANOMET® type Fe-based soft magnetic amorphous alloys. Journal of Applied Physics, 2016, 120, 145102.	1.1	22
20	High-Entropy Metallic Glasses. , 2016, , 445-468.		5
21	Recent Progress in Alloy Designs for High-Entropy Crystalline and Glassy Alloys. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2016, 63, 209-216.	0.1	6
22	Effect of substitution of Cu by Au and Ag on nanocrystallization behavior of Fe83.3Si4B8P4Cu0.7 soft magnetic alloy. Journal of Alloys and Compounds, 2016, 683, 263-270.	2.8	14
23	Dual HCP structures formed in senary ScYLaTiZrHf multi-principal-element alloy. Intermetallics, 2016, 69, 103-109.	1.8	46
24	Direct Imaging of Cu Nano-Cluster in an Fe ₈₅ Si ₂ B ₈ P ₄ Cu ₁ Nanocrystalline Soft Magnetic Alloy by Spherical Aberration Corrected STEM. Materia Japan, 2016, 55, 598-598.	0.1	0
25	Artificially produced rare-earth free cosmic magnet. Scientific Reports, 2015, 5, 16627.	1.6	67
26	Alloy Designs for High-Entropy Alloys, Bulk Metallic Glasses and High-Entropy Bulk Metallic Glasses. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2015, 79, 157-168.	0.2	7
27	Effects of metalloids in Fe-rich soft magnetic amorphous alloys on magnetization. , 2015, , .		1
28	First-principle simulation on the crystallization tendency and enhanced magnetization of Fe ₇₆ B ₁₉ P ₅ amorphous alloy. Materials Research Express, 2015, 2, 016506.	0.8	8
29	Magnetic Influence of Alloying Elements in Fe-Rich Amorphous Alloys Studied by <italic>Ab Initio</italic> Molecular Dynamics Simulations. IEEE Transactions on Magnetics, 2015, 51, 1-4.	1.2	1
30	Soft magnetic Fe25Co25Ni25(B, Si)25 high entropy bulk metallic glasses. Intermetallics, 2015, 66, 8-12.	1.8	83
31	Alloy design for high-entropy alloys based on Pettifor map for binary compounds with 1:1 stoichiometry. Intermetallics, 2015, 66, 56-66.	1.8	17
32	Evolution of fcc Cu clusters and their structure changes in the soft magnetic Fe85.2Si1B9P4Cu0.8 (NANOMET) and FINEMET alloys observed by X-ray absorption fine structure. Journal of Applied Physics, 2015, 117, .	1.1	27
33	Thermodynamic analysis of binary Fe85B15 to quinary Fe85Si2B8P4Cu1 alloys for primary crystallizations of α-Fe in nanocrystalline soft magnetic alloys. Journal of Applied Physics, 2015, 117, 17B737.	1.1	6
34	Atomic packing and diffusion in Fe85Si2B9P4 amorphous alloy analyzed by <i>ab initio</i> molecular dynamics simulation. Journal of Applied Physics, 2015, 117, .	1.1	7
35	High-Entropy Alloys with a Hexagonal Close-Packed Structure Designed by Equi-Atomic Alloy Strategy and Binary Phase Diagrams. Jom, 2014, 66, 1984-1992.	0.9	275
36	Nano-crystallization and magnetic mechanisms of Fe85Si2B8P4Cu1 amorphous alloy by <i>ab initio</i> molecular dynamics simulation. Journal of Applied Physics, 2014, 115, .	1.1	17

#	Article	IF	CITATIONS
37	Effect of Si addition on the corrosion properties of amorphous Fe-based soft magnetic alloys. Journal of Non-Crystalline Solids, 2014, 402, 36-43.	1.5	21
38	Thermodynamic Assessment of Fe-B-P-Cu Nanocrystalline Soft Magnetic Alloys for Their Crystallizations from Amorphous Phase. Materials Transactions, 2014, 55, 1852-1858.	0.4	8
39	Alloy Designs of High-Entropy Crystalline and Bulk Glassy Alloys by Evaluating Mixing Enthalpy and Delta Parameter for Quinary to Decimal Equi-Atomic Alloys. Materials Transactions, 2014, 55, 165-170.	0.4	31
40	The Effects of Fe ₂ P and Fe ₃ P Intermediate Equilibrium Phases on Glass-Forming Ability of Fe ₇₆ Si ₉ B ₁₀ P ₅ Bulk Metallic Glass. Materials Transactions, 2014, 55, 1575-1581.	0.4	3
41	Dynamic Observation of FeSiBPCu Alloys for Crystallization via MeV Electron Irradiation. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2014, 78, 364-368.	0.2	7
42	Phase transition from fcc to bcc structure of the Cu-clusters during nanocrystallization of Fe85.2Si1B9P4Cu0.8 soft magnetic alloy. AIP Advances, 2014, 4, .	0.6	13
43	Effect of cobalt microalloying on the glass forming ability of Ti–Cu–Pd–Zr metallic glass. Journal of Non-Crystalline Solids, 2013, 379, 155-160.	1.5	14
44	A novel Ti-based nanoglass composite with submicron–nanometer-sized hierarchical structures to modulate osteoblast behaviors. Journal of Materials Chemistry B, 2013, 1, 2568.	2.9	59
45	Entropies in Alloy Design for High-Entropy and Bulk Glassy Alloys. Entropy, 2013, 15, 3810-3821.	1.1	100
46	A representative of a new class of materials: Nanograined metallic glasses showing unique properties. , 2013, , .		4
47	Al _{0.5} TiZrPdCuNi High-Entropy (H-E) Alloy Developed through Ti ₂₀ Zr ₂₀ Pd ₂₀ Cu _{20H-E Glassy Alloy Comprising Inter-Transition Metals. Materials Transactions, 2013, 54, 776-782.}	igt;Mi <sı< td=""><td>ıb&g±;20</</td></sı<>	ıb& g±; 20</
48	Compositional features of bulk metallic glasses analyzed with a tetrahedral composition diagram from s-, p-, d- and f-blocks. International Journal of Materials Research, 2012, 103, 1102-1107.	0.1	1
49	Enhance the thermal stability and glass forming ability of Al-based metallic glass by Ca minor-alloying. Intermetallics, 2012, 29, 35-40.	1.8	71
50	Alloy Design for High-Entropy Bulk Glassy Alloys. Procedia Engineering, 2012, 36, 226-234.	1.2	18
51	Critically-Percolated, Cluster-Packed Structure in Cu–Zr Binary Bulk Metallic Glass Demonstrated by Molecular Dynamics Simulations Based on Plastic Crystal Model. Materials Transactions, 2012, 53, 1113-1118.	0.4	4
52	Al-Fe-Pr. Landolt-Bâ^šâ^,rnstein - Group III Condensed Matter, 2011, , 222-223.	0.0	0
53	Pd20Pt20Cu20Ni20P20 high-entropy alloy as a bulk metallic glass in the centimeter. Intermetallics, 2011, 19, 1546-1554.	1.8	198
54	Recent development and application products of bulk glassy alloys. Acta Materialia, 2011, 59, 2243-2267.	3.8	1,049

#	Article	IF	CITATIONS
55	Ge-La-Ni. Landolt-Bâ^šâ^,rnstein - Group III Condensed Matter, 2011, , 253-253.	0.0	Ο
56	Cu-Hf-Ti. Landolt-Bâ^šâ^,rnstein - Group III Condensed Matter, 2011, , 79-82.	0.0	0
57	Ca-Ge-Li. Landolt-Bâ^šâ^,rnstein - Group III Condensed Matter, 2011, , 412-412.	0.0	Ο
58	Al-Fe-Nd. Landolt-Bâ^šâ^,rnstein - Group III Condensed Matter, 2011, , 211-216.	0.0	0
59	Molecular dynamics simulations of critically percolated, cluster-packed structure in Zr–Al–Ni bulk metallic glass. Journal of Materials Science, 2010, 45, 4898-4905.	1.7	8
60	High entropy state of orientationally-disordered clusters in Zr-based bulk metallic glass. Progress in Natural Science: Materials International, 2010, 20, 87-96.	1.8	5
61	Local Atomic Arrangements of Pd-Based Bulk Metallic Glasses of the Metal-Metalloid Type Demonstrated by Molecular Dynamics Simulations. Materials Science Forum, 2010, 654-656, 1038-1041.	0.3	0
62	Zr60Al15(Ni,Cu)25 noncrystalline alloys created by referring to ionic arrangements of a garnet structure with molecular dynamics simulations based on a plastic crystal model. Intermetallics, 2010, 18, 330-341.	1.8	0
63	Vogel–Fulcher–Tammann plot for viscosity scaled with temperature interval between actual and ideal glass transitions for metallic glasses in liquid and supercooled liquid states. Intermetallics, 2010, 18, 406-411.	1.8	52
64	Mixing enthalpy of liquid phase calculated by miedema's scheme and approximated with sub-regular solution model for assessing forming ability of amorphous and glassy alloys. Intermetallics, 2010, 18, 1779-1789.	1.8	184
65	Recent Development and Applications of Bulk Glassy Alloys. International Journal of Applied Glass Science, 2010, 1, 273-295.	1.0	44
66	Bulk Metallic Glasses: Formation and Applications. , 2010, , 1-6.		1
67	Golden Mean analysis of bulk metallic glasses with critical diameter over half-inch for their mole fractions of compositions. Intermetallics, 2009, 17, 696-703.	1.8	11
68	Evaluation of glass-forming ability of binary metallic glasses with liquidus temperature, crystallographic data from binary phase diagrams and molecular dynamics simulations. Journal of Alloys and Compounds, 2009, 483, 102-106.	2.8	16
69	Cluster packed structures in bulk metallic glasses created from BCC derivative compounds. Journal of Physics: Conference Series, 2009, 144, 012045.	0.3	5
70	Noncrystalline atomic arrangements computationally created from crystalline compound by treating groups of atoms as hypothetical clusters. Intermetallics, 2008, 16, 283-292.	1.8	17
71	Noncrystalline structure created through ensemble of clusters in metastable cubic Zr2Ni structure by their random rotations and subsequent annealing. Intermetallics, 2008, 16, 774-778.	1.8	12
72	Formation of Zr66.7Al11.1Ni22.2 noncrystalline alloys demonstrated by molecular dynamics simulations based on distorted plastic crystal model. Intermetallics, 2008, 16, 819-826.	1.8	12

#	Article	IF	CITATIONS
73	Phase stability of Cu2Mg and CuMg2 compounds against noncrystallizations analyzed with a plastic crystal model. Intermetallics, 2008, 16, 1273-1278.	1.8	7
74	Analysis of Optimal Compositions of Ternary Bulk Metallic Glasses with Thermodynamic Quantities. Materials Science Forum, 2007, 539-543, 1988-1993.	0.3	0
75	Syntheses and Applications of Fe-, Co-, Ni- and Cu-Based Bulk Glassy Alloys. Materials Science Forum, 2007, 539-543, 92-99.	0.3	1
76	Analysis of Bulk Metallic Glass Formation Using a Tetrahedron Composition Diagram that Consists of Constituent Classes Based on Blocks of Elements in the Periodic Table. Materials Transactions, 2007, 48, 1304-1312.	0.4	11
77	Analyses of glass transition phenomena by solving differential equation with delay effect. Journal of Alloys and Compounds, 2007, 434-435, 131-134.	2.8	1
78	Thermal stability and magnetic properties of Gd–Fe–Al bulk amorphous alloys. Journal of Alloys and Compounds, 2007, 440, 199-203.	2.8	19
79	Thermal stability and mechanical properties of Gd-Co-Al bulk glass alloys. Transactions of Nonferrous Metals Society of China, 2007, 17, 1220-1224.	1.7	5
80	Analyses of glass-transition behavior of Pd-based metallic glass with linear solution to non-linear differential equation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 449-451, 594-598.	2.6	1
81	Gd–Co–Al and Gd–Ni–Al bulk metallic glasses with high glass forming ability and good mechanical properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 457, 226-230.	2.6	48
82	Gd–Ni–Al bulk glasses with great glass-forming ability and better mechanical properties. Journal of Materials Science, 2007, 42, 8662-8666.	1.7	12
83	Developments and Applications of Bulk Glassy Alloys in Late Transition Metal Base System. Materials Transactions, 2006, 47, 1275-1285.	0.4	114
84	Fabrication, properties and applications of bulk glassy alloys in late transition metal-based systems. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 441, 18-25.	2.6	59
85	Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element. Materials Transactions, 2005, 46, 2817-2829.	0.4	3,222
86	Thermal Stability and Magnetic Properties of Fe–Nd–Al Amorphous Alloys. Materials Transactions, 2005, 46, 2844-2847.	0.4	4
87	Development of Metallic Glasses by Semi-Empirical Calculation Method. Journal of Metastable and Nanocrystalline Materials, 2005, 24-25, 283-286.	0.1	4
88	Bulk Nonequilibrium Alloys by Stabilization of Supercooled Liquid: Fabrication and Functional Properties. AIP Conference Proceedings, 2004, , .	0.3	0
89	Size dependence of soft to hard magnetic transition in (Nd, Pr)–Fe–Al bulk amorphous alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 375-377, 1140-1144.	2.6	21
90	Nanoclusters—critical thickness—magnetic properties relationship in Nd90â^'Fe Al10 amorphous ribbons. Journal of Magnetism and Magnetic Materials, 2004, 272-276, E1137-E1139.	1.0	1

#	Article	IF	CITATIONS
91	Recent progress in bulk glassy, nanoquasicrystalline and nanocrystalline alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 375-377, 16-30.	2.6	236
92	Calculations of dominant factors of glass-forming ability for metallic glasses from viscosity. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 375-377, 449-454.	2.6	21
93	Mechanical Properties of Metastable Alloys with Novel Atomic Configurations Obtained by Use of Stabilization of Supercooled Liquid. Materials Science Forum, 2003, 426-432, 3-10.	0.3	1
94	金属ã,¬ãƒ©ã,¹ãŠã,^ã³ã,¢ãƒ¢ãƒ«ãƒ•ã,¡ã,¹å•金ã®å½¢æ^能ã®ç†±åŠ›å┤的評ä¾;. Materia Japan, 2003, 42, 4	1 3.4 21.	2
95	High Strength Ni-Fe-W and Ni-Fe-W-P Alloys Produced by Electrodeposition. Materials Transactions, 2003, 44, 1942-1947.	0.4	27
96	Amorphous Co-Ni-P Alloys with High Saturation Magnetization Produced by Electrodeposition. Materials Transactions, 2003, 44, 911-916.	0.4	5
97	Effect of Sodium Hypophosphite on the Structure and Properties of Electrodeposited Ni-W-P Alloys. Materials Transactions, 2003, 44, 705-708.	0.4	16
98	Compositions, Structure and Glass-Forming Ability of Bulk Glassy Alloys. Materials Science Forum, 2002, 403, 1-11.	0.3	1
99	Calculation of Supercooled Liquid Range and Estimation of Glass-Forming Ability of Metallic Glasses using the Vogel-Fulcher-Tammann Equation. Materials Transactions, 2002, 43, 1205-1213.	0.4	13
100	Bulk Amorphous and Partially Crystallized Alloys in Nd-Fe-(Al, B) System with Hard Magnetic Properties Prepared by Arc Melting. Materials Transactions, 2002, 43, 1985-1991.	0.4	6
101	Calculations of Crystallization Temperature of Multicomponent Metallic Glasses. Materials Transactions, 2002, 43, 2275-2284.	0.4	8
102	Recent Progress in Bulk Glassy Alloys. Materials Transactions, 2002, 43, 1892-1906.	0.4	291
103	Computer-Aided Development of Multicomponent Metallic Glasses. Materials Research Society Symposia Proceedings, 2002, 754, 1.	0.1	0
104	Structure and crystallization behavior of Al-free Ge-based amorphous alloys produced by rapid solidification of the melt. Journal of Non-Crystalline Solids, 2001, 289, 196-203.	1.5	14
105	Investigations on the Magnetic Properties of High-Coercivity (Nd _{1â^'x} Fe _x) ₉₀ Al ₁₀ Bulk Amorphous Alloys. Materials Research Society Symposia Proceedings, 2001, 674, 1.	0.1	9
106	Evaluation of Glass-Forming Ability for Metallic Glasses from Time-Reduced Temperature-Transformation Diagram. Materials Transactions, 2001, 42, 2374-2381.	0.4	16
107	Formation and Functional Properties of Fe-Based Bulk Glassy Alloys. Materials Transactions, 2001, 42, 970-978.	0.4	86
108	Calculations of Amorphous-Forming Composition Range for Ternary Alloy Systems and Analyses of Stabilization of Amorphous Phase and Amorphous-Forming Ability. Materials Transactions, 2001, 42, 1435-1444.	0.4	84

#	Article	IF	CITATIONS
109	Quantitative evaluation of critical cooling rate for metallic glasses. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 304-306, 446-451.	2.6	260
110	Calculations of Mixing Enthalpy and Mismatch Entropy for Ternary Amorphous Alloys. Materials Transactions, JIM, 2000, 41, 1372-1378.	0.9	662
111	Nanocrystallization of Ge-Al-Cr-Ce-Sm alloy. Journal of Materials Science, 2000, 35, 5537-5543.	1.7	6
112	Structural and Magnetic Behaviour of the Rapidly Quenched Nd-Fe-Si Alloys. Materials Science Forum, 2000, 343-346, 91-96.	0.3	3
113	SYNTHESIS AND SOFT MAGNETIC PROPERTIES OF FE-BASED BULK AMORPHOUS ALLOYS. , 2000, , 335-358.		0
114	Synthesis of High Strength Bulk Nanocrystalline Alloys Containing Remaining Amorphous Phase. Materials Science Forum, 1999, 307, 1-8.	0.3	17
115	High-strength bulk nanocrystalline alloys in a Zr-based system containing compound and glassy phases. Journal of Non-Crystalline Solids, 1999, 250-252, 724-728.	1.5	12
116	Preparation and Mechanical Properties of Zr-based Bulk Nanocrystalline Alloys Containing Compound and Amorphous Phases. Materials Transactions, JIM, 1999, 40, 42-51.	0.9	117
117	Title is missing!. Journal of Materials Science Letters, 1998, 17, 1439-1442.	0.5	10
118	Ferromagnetic bulk amorphous alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1998, 29, 1779-1793.	1.1	223
119	Ferrous and Nonferrous Bulk Amorphous Alloys. Materials Science Forum, 1998, 269-272, 855-864.	0.3	103
120	Hard magnetic bulk amorphous alloys. IEEE Transactions on Magnetics, 1997, 33, 3814-3816.	1.2	37
121	Structural Study of Amorphous Fe89Nd7B4 and Fe89Zr7B4 Alloys by X-ray Diffraction. High Temperature Materials and Processes, 1997, 16, 57-64.	0.6	3
122	Amorphous Nd–Fe–Si Thick Ribbons and Their Hard Magnetic Properties. Materials Transactions, JIM, 1997, 38, 1027-1030.	0.9	14
123	New Fe–Co–Ni–Zr–B Amorphous Alloys with Wide Supercooled Liquid Regions and Good Soft Magnetic Properties. Materials Transactions, JIM, 1997, 38, 359-362.	0.9	184
124	Thermal Stability and Magnetic Properties of Bulk Amorphous Fe–Al–Ga–P–C–B–Si Alloys. Materials Transactions, JIM, 1997, 38, 189-196.	0.9	71
125	New Amorphous Alloys in Al–Si–Fe–Ni and Al–Si–Fe–Co Systems and Their Crystallization Behaviour. Materials Transactions, JIM, 1997, 38, 595-598.	0.9	10
126	Bulk amorphous alloys with high mechanical strength and good soft magnetic properties in Fe–TM–B (TM=IV–VIII group transition metal) system. Applied Physics Letters, 1997, 71, 464-466.	1.5	386

#	Article	IF	CITATIONS
127	Improvement of hard magnetic properties of Fe90Nd7B3 alloys by two-stage crystallization treatment. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1997, 226-228, 636-640.	2.6	4
128	Soft magnetic properties of bulk Fe-based amorphous alloys prepared by copper mold casting. IEEE Transactions on Magnetics, 1996, 32, 4866-4871.	1.2	81
129	Preparation of Bulk Pr–Fe–Al Amorphous Alloys and Characterization of Their Hard Magnetic Properties. Materials Transactions, JIM, 1996, 37, 1731-1740.	0.9	71
130	Hard Magnetic Bulk Amorphous Nd–Fe–Al Alloys of 12 mm in Diameter Made by Suction Casting. Materials Transactions, JIM, 1996, 37, 636-640.	0.9	96
131	Bulk Nd–Fe–Al Amorphous Alloys with Hard Magnetic Properties. Materials Transactions, JIM, 1996, 37, 99-108.	0.9	255
132	Hard Magnetic Properties of Nanocrystalline Fe–Nd–B Alloys Containing α-Fe and Intergranular Amorphous Phase. Materials Transactions, JIM, 1995, 36, 676-685.	0.9	42
133	Hard Magnetic Properties of Nanocrystalline Fe-Rich Fe–Nd–B Alloys Prepared by Partial Crystallization of Amorphous Phase. Materials Transactions, JIM, 1995, 36, 962-971.	0.9	49
134	Hard magnetic properties of Fe-Nd-B alloys containing intergranular amorphous phase. IEEE Transactions on Magnetics, 1995, 31, 3626-3628.	1.2	75
135	Preparation of Composite AlN and Metallic Particles in Al–Cr–M–N (M=Fe, Co or) Tj ETQq1 35, 663-672.	1 0.78431 0.9	4 rgBT /Over 0
136	Ultrafine AlN and Cr ₂ N Composite Particles Prepared by Reaction between Nitrogen Plasma and Molten Al–Cr Alloys. Materials Transactions, JIM, 1994, 35, 722-729.	0.9	2
137	Computer Simulation of Phase Decomposition of Al-Zn and Fe-Mo Alloys Based upon the Non-Linear Diffusion Equation. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1993, 57, 492-500.	0.2	4
138	Computer simulations of the phase decomposition on Cu-Co binary alloys based on the non-linear diffusion equation. Journal of Materials Science, 1992, 27, 2444-2448.	1.7	14
139	Computer Simulation of Phase Decomposition of Al-Zn Alloy Based upon Non-Linear Diffusion Equation. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1992, 56, 1242-1247.	0.2	4
140	Computer Simulation of Phase Decomposition in the Regular Solid Solution based upon the Cahn-Hilliard's Non-Linear Diffusion Equation. Materials Transactions, JIM, 1991, 32, 915-920.	0.9	9
141	Computer Simulation of Phase Decomposition in the Regular Solid Solution based upon the Non-Linear Diffusion Equation. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1990, 54, 1177-1182.	0.2	1
142	Molecular Dynamics Simulations Based on Plastic Crystal Model with Introducing United Atom Scheme Demonstrated for Zr ₂ Ni Metallic Glass. Materials Science Forum, 0, 706-709, 1337-1342.	0.3	0