
Jane Southworth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5863665/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Editorial introduction: women in land science. Journal of Land Use Science, 2022, 17, 1-11.	2.2	1
2	Vegetation Dynamics and Climatological Drivers in Ethiopia at the Turn of the Century. Remote Sensing, 2021, 13, 3267.	4.0	12
3	Specialty Grand Challenge: Remote Sensing Time Series Analysis. Frontiers in Remote Sensing, 2021, 2, .	3.5	6
4	Spatiotemporal changes in vegetation greenness across continental Ecuador: a Pacific-Andean-Amazonian gradient, 1982–2010. Journal of Land Use Science, 2021, 16, 18-33.	2.2	4
5	Special Issue on Dynamics of the Global Savanna and Grasslands Biomes. Applied Sciences (Switzerland), 2020, 10, 8043.	2.5	1
6	A Quantitative Framework for Analyzing Spatial Dynamics of Flood Events: A Case Study of Super Cyclone Amphan. Remote Sensing, 2020, 12, 3454.	4.0	25
7	An Evaluation of Vegetation Health in and around Southern African National Parks during the 21st Century (2000–2016). Applied Sciences (Switzerland), 2020, 10, 2366.	2.5	10
8	A Healthy Park Needs Healthy Vegetation: The Story of Gorongosa National Park in the 21st Century. Remote Sensing, 2020, 12, 476.	4.0	15
9	Operational Large-Area Land-Cover Mapping: An Ethiopia Case Study. Remote Sensing, 2020, 12, 954.	4.0	10
10	Integrating Surface-Based Temperature and Vegetation Abundance Estimates into Land Cover Classifications for Conservation Efforts in Savanna Landscapes. Sensors, 2019, 19, 3456.	3.8	7
11	A spatiotemporal natural-human database to evaluate road development impacts in an Amazon trinational frontier. Scientific Data, 2019, 6, 93.	5.3	6
12	Mapping Time-Space Brickfield Development Dynamics in Peri-Urban Area of Dhaka, Bangladesh. ISPRS International Journal of Geo-Information, 2019, 8, 447.	2.9	10
13	Scientists and Stakeholders, Data and Diagnostics: Crossing Boundaries for Modeling the Impacts of Highway Paving in a Tri-national Frontier in the Amazon. , 2019, , 327-359.		2
14	Influence of El Niño-Southern oscillation (ENSO) on agroclimatic zoning for tomato in Mozambique. Agricultural and Forest Meteorology, 2018, 248, 316-328.	4.8	20
15	Understanding Land Cover Change in a Fragmented Forest Landscape in a Biodiversity Hotspot of Coastal Ecuador. Remote Sensing, 2018, 10, 1980.	4.0	10
16	Using a coupled dynamic factor – random forest analysis (DFRFA) to reveal drivers of spatiotemporal heterogeneity in the semi-arid regions of southern Africa. PLoS ONE, 2018, 13, e0208400.	2.5	4
17	Protected Areas, Climate Change, and Ecosystem Sustainability. , 2018, , 202-219.		1
18	Rohingya Refugee Crisis and Forest Cover Change in Teknaf, Bangladesh. Remote Sensing, 2018, 10, 689.	4.0	91

#	Article	IF	CITATIONS
19	Understanding Long-Term Savanna Vegetation Persistence across Three Drainage Basins in Southern Africa. Remote Sensing, 2018, 10, 1013.	4.0	14
20	Analyzing Land Cover Change and Urban Growth Trajectories of the Mega-Urban Region of Dhaka Using Remotely Sensed Data and an Ensemble Classifier. Sustainability, 2018, 10, 10.	3.2	52
21	Predicting shifts in large herbivore distributions under climate change and management using a spatially-explicit ecosystem model. Ecological Modelling, 2017, 352, 1-18.	2.5	17
22	Population pressure and global markets drive a decade of forest cover change in Africa's Albertine Rift. Applied Geography, 2017, 81, 52-59.	3.7	23
23	A new difference image creation method based on deep neural networks for change detection in remote-sensing images. International Journal of Remote Sensing, 2017, 38, 7161-7175.	2.9	30
24	Elephants respond to resource trade-offs in an aseasonal system through daily and annual variability in resource selection. Koedoe, 2017, 59, .	0.9	3
25	Utilizing Multiple Lines of Evidence to Determine Landscape Degradation within Protected Area Landscapes: A Case Study of Chobe National Park, Botswana from 1982 to 2011. Remote Sensing, 2016, 8, 623.	4.0	14
26	Dynamics of the relationship between NDVI and SWIR32 vegetation indices in southern Africa: implications for retrieval of fractional cover from MODIS data. International Journal of Remote Sensing, 2016, 37, 1476-1503.	2.9	18
27	Demonstrating correspondence between decision-support models and dynamics of real-world environmental systems. Environmental Modelling and Software, 2016, 83, 74-87.	4.5	9
28	Utilization of the SAVANNA model to analyze future patterns of vegetation cover in Kruger National Park under changing climate. Ecological Modelling, 2016, 342, 147-160.	2.5	20
29	Anthropogenic change in savannas and associated forest biomes. Journal of Land Use Science, 2016, 11, 1-6.	2.2	6
30	Changes in vegetation persistence across global savanna landscapes, 1982–2010. Journal of Land Use Science, 2016, 11, 7-32.	2.2	23
31	Household level influences on fragmentation in an African park landscape. Applied Geography, 2015, 58, 18-31.	3.7	19
32	Comparison of the driving forces of spring phenology among savanna landscapes by including combined spatial and temporal heterogeneity. International Journal of Biometeorology, 2015, 59, 1373-1384.	3.0	4
33	Mapping multi-scale impacts of deforestation in the Amazonian rainforest from 1986 to 2010. Journal of Land Use Science, 2015, 10, 174-190.	2.2	5
34	Effects of road infrastructure on forest value across a tri-national Amazonian frontier. Biological Conservation, 2015, 191, 674-681.	4.1	16
35	Understanding forest loss and recovery: a spatiotemporal analysis of land change in and around Bannerghatta National Park, India. Journal of Land Use Science, 2015, 10, 402-424.	2.2	17
36	Time Series Analysis of Land Cover Change: Developing Statistical Tools to Determine Significance of Land Cover Changes in Persistence Analyses. Remote Sensing, 2014, 6, 4473-4497.	4.0	33

#	Article	IF	CITATIONS
37	Trade-offs among forest value components in community forests of southwestern Amazonia. Ecology and Society, 2014, 19, .	2.3	14
38	Spatial persistence and temporal patterns in vegetation cover across Florida, 1982–2006. Physical Geography, 2014, 35, 151-180.	1.4	12
39	Climate variability as a dominant driver of post-disturbance savanna dynamics. Applied Geography, 2014, 53, 389-401.	3.7	16
40	Fractally deforested landscape: Pattern and process in a tri-national Amazon frontier. Applied Geography, 2014, 52, 204-211.	3.7	75
41	Retrospective analysis of landscape dynamics using normalized spectral entropy. Remote Sensing Letters, 2013, 4, 1049-1056.	1.4	3
42	Peopled Parks: Forest Change in India's Protected Landscapes. , 2013, , 113-139.		1
43	Beyond classifications: Combining continuous and discrete approaches to better understand land-cover change within the lower Mekong River region. Applied Geography, 2013, 39, 26-45.	3.7	11
44	Trans-boundary infrastructure and land cover change: Highway paving and community-level deforestation in a tri-national frontier in the Amazon. Land Use Policy, 2013, 34, 27-41.	5.6	54
45	The Monitoring of Land-Cover Change and Management across Gradient Landscapes in Africa. , 2013, , 165-209.		3
46	Mapping fractality during the process of deforestation in an Amazon tri-national frontier. Remote Sensing Letters, 2013, 4, 589-598.	1.4	4
47	Indicating structural connectivity in Amazonian rainforests from 1986 to 2010 using morphological image processing analysis. International Journal of Remote Sensing, 2013, 34, 5187-5200.	2.9	16
48	Beyond Precipitation: Physiographic Gradients Dictate the Relative Importance of Environmental Drivers on Savanna Vegetation. PLoS ONE, 2013, 8, e72348.	2.5	43
49	Using Remote Sensing to Quantify Vegetation Change and Ecological Resilience in a Semi-Arid System. Land, 2013, 2, 108-130.	2.9	42
50	Local Perception of Risk to Livelihoods in the Semi-Arid Landscape of Southern Africa. Land, 2013, 2, 225-251.	2.9	19
51	Integrating Dendrochronology, Climate and Satellite Remote Sensing to Better Understand Savanna Landscape Dynamics in the Okavango Delta, Botswana. Land, 2013, 2, 637-655.	2.9	8
52	Remote Sensing-Based Fractal Analysis and Scale Dependence Associated with Forest Fragmentation in an Amazon Tri‑National Frontier. Remote Sensing, 2013, 5, 454-472.	4.0	42
53	Disentangling the Relationships between Net Primary Production and Precipitation in Southern Africa Savannas Using Satellite Observations from 1982 to 2010. Remote Sensing, 2013, 5, 3803-3825.	4.0	55
54	Combined Spatial and Temporal Effects of Environmental Controls on Long-Term Monthly NDVI in the Southern Africa Savanna. Remote Sensing, 2013, 5, 6513-6538.	4.0	49

#	Article	IF	CITATIONS
55	Linking vegetation response to seasonal precipitation in the Okavango–Kwando–Zambezi catchment of southern Africa. International Journal of Remote Sensing, 2012, 33, 6783-6804.	2.9	28
56	The role of private lands for conservation: Land cover change analysis in the Caldenal savanna ecosystem, Argentina. Applied Geography, 2012, 34, 281-288.	3.7	14
57	Spatial complexity in fragmenting Amazonian rainforests: Do feedbacks from edge effects push forests towards an ecological threshold?. Ecological Complexity, 2012, 11, 67-74.	2.9	26
58	Forest transition pathways in Asia – studies from Nepal, India, Thailand, and Cambodia. Journal of Land Use Science, 2012, 7, 51-65.	2.2	56
59	The Effects of Selective Logging Behaviors on Forest Fragmentation and Recovery. International Journal of Forestry Research, 2012, 2012, 1-10.	0.8	2
60	Simulating Forest Cover Changes of Bannerghatta National Park Based on a CA-Markov Model: A Remote Sensing Approach. Remote Sensing, 2012, 4, 3215-3243.	4.0	97
61	Responses by households to resource scarcity and human–wildlife conflict: Issues of fortress conservation and the surrounding agricultural landscape. Journal for Nature Conservation, 2011, 19, 79-86.	1.8	28
62	Roads as Drivers of Change: Trajectories across the Tri‑National Frontier in MAP, the Southwestern Amazon. Remote Sensing, 2011, 3, 1047-1066.	4.0	107
63	Landscapes as continuous entities: forest disturbance and recovery in the Albertine Rift landscape. Landscape Ecology, 2011, 26, 877-890.	4.2	30
64	Does population increase equate to conservation success? Forest fragmentation and conservation of the black howler monkey. Conservation and Society, 2011, 9, 216.	0.8	5
65	Parks, People and Pixels: Evaluating Landscape Effects of an East African National Park on its Surroundings. Tropical Conservation Science, 2010, 3, 122-142.	1.2	23
66	Digital Remote Sensing within the Field of Land Change Science: Past, Present and Future Directions. Geography Compass, 2010, 4, 1695-1712.	2.7	10
67	Application of Object Based Classification and High Resolution Satellite Imagery for Savanna Ecosystem Analysis. Remote Sensing, 2010, 2, 2748-2772.	4.0	38
68	Accessibility, Demography and Protection: Drivers of Forest Stability and Change at Multiple Scales in the Cauvery Basin, India. Remote Sensing, 2010, 2, 306-332.	4.0	18
69	Social and ecological factors and land-use land-cover diversity in two provinces in southeast Asia. Journal of Land Use Science, 2010, 5, 277-306.	2.2	21
70	Remotely sensed spectral heterogeneity as a proxy of species diversity: Recent advances and open challenges. Ecological Informatics, 2010, 5, 318-329.	5.2	284
71	Protection vs. commercial management: Spatial and temporal analysis of land cover changes in the tropical forests of Central India. Forest Ecology and Management, 2010, 259, 1009-1017.	3.2	23
72	Evaluation of conservation interventions using a cellular automata-Markov model. Forest Ecology and Management, 2010, 260, 1716-1725.	3.2	58

#	Article	IF	CITATIONS
73	Wetland conservation: Change and fragmentation in Trinidad's protected areas. Geoforum, 2009, 40, 91-104.	2.5	33
74	Dwindling resources and fragmentation of landscapes around parks: wetlands and forest patches around Kibale National Park, Uganda. Landscape Ecology, 2009, 24, 643-656.	4.2	82
75	Tourism, forest conversion, and land transformations in the Angkor basin, Cambodia. Applied Geography, 2009, 29, 212-223.	3.7	83
76	Reforestation: Challenges and Themes in Reforestation Research. Landscape Series, 2009, , 1-14.	0.2	4
77	Parks as a Mechanism to Maintain and Facilitate Recovery of Forest Cover: Examining Reforestation, Forest Maintenance and Productivity in Uganda. Landscape Series, 2009, , 275-296.	0.2	2
78	Reforestation: Conclusions and Implications. Landscape Series, 2009, , 357-367.	0.2	1
79	Application of multi-scale spatial and spectral analysis for predicting primate occurrence and habitat associations in Kibale National Park, Uganda. Remote Sensing of Environment, 2008, 112, 2170-2186.	11.0	40
80	Milpa imprint on the tropical dry forest landscape in Yucatan, Mexico: Remote sensing & field measurement of edge vegetation. Agriculture, Ecosystems and Environment, 2008, 123, 293-304.	5.3	24
81	The human landscape around the Island Park: impacts and responses to Kibale National Park. , 2008, , 129-144.		49
82	Monitoring landscape fragmentation in an inaccessible mountain area: Celaque National Park, Western Honduras. Landscape and Urban Planning, 2007, 83, 154-167.	7.5	40
83	Introduction to the special issue: Are parks working? Exploring human–environment tradeoffs in protected area conservation. Applied Geography, 2006, 26, 87-95.	3.7	52
84	Linking Spatial and Temporal Variation at Multiple Scales in a Heterogeneous Landscapeâ^—. Professional Geographer, 2006, 58, 406-420.	1.8	22
85	An Exploratory Framework for the Empirical Measurement of Resilience. Ecosystems, 2005, 8, 975-987.	3.4	410
86	Climate change impacts on soil erosion in Midwest United States with changes in crop management. Catena, 2005, 61, 165-184.	5.0	191
87	Land cover change and landscape fragmentation—comparing the utility of continuous and discrete analyses for a western Honduras region. Agriculture, Ecosystems and Environment, 2004, 101, 185-205.	5.3	149
88	Monitoring Parks Through Remote Sensing: Studies in Nepal and Honduras. Environmental Management, 2004, 34, 748-760.	2.7	44
89	Assessing the impact of Celaque National Park on forest fragmentation in western Honduras. Applied Geography, 2004, 24, 303-322.	3.7	45
90	Forest Degradation and Fragmentation within Celaque National Park, Honduras. , 2004, , 305-310.		0

#	Article	IF	CITATIONS
91	Title is missing!. Landscape Ecology, 2003, 18, 141-158.	4.2	155
92	Fragmentation of a Landscape: Incorporating landscape metrics into satellite analyses of land-cover change. Landscape Research, 2002, 27, 253-269.	1.6	107
93	An integrated GIS and modeling approach for assessing the transient response of forests of the southern Great Lakes region to a doubled CO2 climate. Forest Ecology and Management, 2002, 155, 237-255.	3.2	24
94	The dynamics of land-cover change in western Honduras: exploring spatial and temporal complexity. Agricultural Economics (United Kingdom), 2002, 27, 355-369.	3.9	78
95	Title is missing!. Climatic Change, 2002, 53, 447-475.	3.6	43
96	Crop Modeling Results Under Climate Change for the Upper Midwest USA. , 2002, , 127-157.		2
97	The Influence of Accessibility, Local Institutions, and Socioeconomic Factors on Forest Cover Change in the Mountains of Western Honduras. Mountain Research and Development, 2001, 21, 276-283.	1.0	107
98	Consequences of future climate change and changing climate variability on maize yields in the midwestern United States. Agriculture, Ecosystems and Environment, 2000, 82, 139-158.	5.3	166