Rizki A Mangkuto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5863389/publications.pdf

Version: 2024-02-01

840776 677142 39 512 11 22 citations h-index g-index papers 39 39 39 414 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Design optimisation for window size, orientation, and wall reflectance with regard to various daylight metrics and lighting energy demand: A case study of buildings in the tropics. Applied Energy, 2016, 164, 211-219.	10.1	166
2	Optimisation of daylight admission based on modifications of light shelf design parameters. Journal of Building Engineering, 2018, 18, 195-209.	3.4	43
3	Heating and cooling energy demand in underground buildings: Potential for saving in various climates and functions. Energy and Buildings, 2014, 71, 129-136.	6.7	39
4	Validation of <i>DIALux</i> 4.12 and <i>DIALux evo</i> 4.1 against the Analytical Test Cases of CIE 171:2006. LEUKOS - Journal of Illuminating Engineering Society of North America, 2016, 12, 139-150.	2.9	29
5	Determination of discomfort glare criteria for daylit space in Indonesia. Solar Energy, 2017, 149, 151-163.	6.1	28
6	Determination of appropriate metrics for indicating indoor daylight availability and lighting energy demand using genetic algorithm. Solar Energy, 2018, 170, 1074-1086.	6.1	28
7	Design optimisation of internal shading device in multiple scenarios: Case study in Bandung, Indonesia. Journal of Building Engineering, 2019, 24, 100745.	3.4	16
8	Lighting performance and electrical energy consumption of a virtual window prototype. Applied Energy, 2014, 135, 261-273.	10.1	14
9	Design Optimisation of Fixed and Adaptive Shading Devices on Four Façade Orientations of a High-Rise Office Building in the Tropics. Buildings, 2022, 12, 25.	3.1	14
10	Revisiting the national standard of daylighting in Indonesia: A study of five daylit spaces in Bandung. Solar Energy, 2016, 126, 276-290.	6.1	13
11	Research note: The accuracy of the mean spherical semi-cubic illuminance approach for determining scalar illuminance. Lighting Research and Technology, 2020, 52, 151-158.	2.7	13
12	Prediction of Daylight Availability in a Large Hall with Multiple Facades Using Computer Simulation and Subjective Perception. Procedia Engineering, 2017, 170, 313-319.	1,2	12
13	The effects of illuminance, colour temperature, and colour rendering of various existing light-emitting diode lamps on subjective preference and performance in Indonesia. Journal of Building Engineering, 2018, 19, 334-341.	3.4	12
14	Visual Comfort Assessment Using High Dynamic Range Images under Daylight Condition in the Main Library Building of Institut Teknologi Bandung. Procedia Engineering, 2017, 170, 234-239.	1.2	11
15	A comparison of three approaches for determining scalar illuminance from cubic illuminance data. Lighting Research and Technology, 2019, 51, 625-641.	2.7	11
16	Assessment of pitch floodlighting and glare condition in the Main Stadium of Gelora Bung Karno, Indonesia. Measurement: Journal of the International Measurement Confederation, 2018, 117, 186-199.	5.0	10
17	Simulation of virtual natural lighting solutions with a simplified view. Lighting Research and Technology, 2014, 46, 198-218.	2.7	8
18	Uncertainty Analysis of Cylindrical Illuminance Approximation. LEUKOS - Journal of Illuminating Engineering Society of North America, 2020, 16, 267-278.	2.9	7

#	Article	IF	Citations
19	On the Interaction between the Depth and Elevation of External Shading Devices in Tropical Daylit Classrooms with Symmetrical Bilateral Openings. Buildings, 2022, 12, 818.	3.1	5
20	Radiation modeling of a photo-reactor using a backward ray-tracing method: an insight into indoor photocatalytic oxidation. Environmental Science and Pollution Research, 2014, 21, 11142-11154.	5.3	4
21	Verification tests of a mirror box type artificial sky without and with building scale model. Frontiers of Architectural Research, 2018, 7, 151-166.	2.8	4
22	Error and Uncertainty Analyses of Reference and Sample Reflectances Measured with Substitution Integrating Spheres. LEUKOS - Journal of Illuminating Engineering Society of North America, 2022, 18, 52-65.	2.9	4
23	Spectral reflectance and chromaticity differences of various colors of interior finishing material samples under tunable LED lamps. Journal of Building Engineering, 2021, 44, 103280.	3.4	4
24	The Impact of Courtyard and Street Canyon Surroundings on Global Illuminance and Estimated UV Index in the Tropics. Journal of Daylighting, 2020, 7, 167-185.	1.2	4
25	Comparison between lighting performance of a virtual natural lighting solutions prototype and a real window based on computer simulation. Frontiers of Architectural Research, 2014, 3, 398-412.	2.8	3
26	Theoretical Impact of Building Façade Thickness on Daylight Metrics and Lighting Energy Demand in Buildings: A Case Study of the Tropics. Buildings, 2021, 11, 656.	3.1	3
27	Modelling and simulation of virtual natural lighting solutions with complex views. Building Simulation, 2014, 7, 563-578.	5.6	2
28	Design optimisation of mean room surface exitance and total corneal illuminance using Monte Carlo simulation. Building Simulation, 2022, 15, 1869-1882.	5.6	2
29	Mitigation of even harmonics in the Fourier components of vertical illuminance around a reference point. Lighting Research and Technology, 2020, 52, 675-691.	2.7	1
30	On Illumination Vector Quantities Due to Area Light Sources: Comparison of Two Calculation Approaches. LEUKOS - Journal of Illuminating Engineering Society of North America, 0, , 1-18.	2.9	1
31	OPTIMISASI PARAMETRIK FASAD BILAH HORIZONTAL TERHADAP PENCAHAYAAN ALAMI DENGAN METRIK USEFUL DAYLIGHT ILLUMINANCE (UDI) DI KOTA LHOKSEUMAWE. Nature: National Academic Journal of Architecture, 2020, 7, 89.	0.1	1
32	Photometric and Colorimetric Measurements of Luminaires Using Goniometer and spectrophotometer in a Dark Chamber. Procedia Engineering, 2017, 170, 226-233.	1.2	0
33	Prediction of climate-based daylight metrics by simulating monthly median illuminance. AIP Conference Proceedings, 2019, , .	0.4	0
34	Experimental validation of colour mixing in CIE XYZ colour space with LED lamps. AIP Conference Proceedings, $2019, , .$	0.4	0
35	Optimization of artificial lighting in physiotheraphy room of Hasan Sadikin Hospital. AIP Conference Proceedings, 2019, , .	0.4	0
36	Optimisation of luminance-based metrics for lighting in an open-plan dental examination room considering psycho-physiological response of dentists. Optical Review, 2019, 26, 162-178.	2.0	0

#	Article	IF	CITATIONS
37	Parallax errors in cubic illuminance measurement. Lighting Research and Technology, 2020, 52, 915-936.	2.7	O
38	Usulan Pembaruan Tabel Faktor Langit pada SNI 03-2396-2001 tentang Pencahayaan Alami pada Bangunan. Jurnal Pemukiman, 2021, 16, 61.	0.1	0
39	Computation of the greenery-sky-view factor in daylit buildings. Architectural Engineering and Design Management, 0 , 1 -20.	1.7	O