
Eirini Trompouki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5861835/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multilayer omics analysis reveals a non-classical retinoic acid signaling axis that regulates hematopoietic stem cell identity. Cell Stem Cell, 2022, 29, 131-148.e10.	11.1	40
2	New tools for â€~ZEBRA-FISHING'. Briefings in Functional Genomics, 2021, , .	2.7	0
3	Mixing "good and bad―annoys neutrophils. Blood, 2021, 137, 1272-1274.	1.4	0
4	Inflammation, Aging and Hematopoiesis: A Complex Relationship. Cells, 2021, 10, 1386.	4.1	22
5	ZFP451-mediated SUMOylation of SATB2 drives embryonic stem cell differentiation. Genes and Development, 2021, 35, 1142-1160.	5.9	9
6	Chemotherapy-induced transposable elements activate MDA5 to enhance haematopoietic regeneration. Nature Cell Biology, 2021, 23, 704-717.	10.3	40
7	Sensing Stemness. Current Stem Cell Reports, 2021, 7, 219-228.	1.6	4
8	DOT1L-mediated murine neuronal differentiation associates with H3K79me2 accumulation and preserves SOX2-enhancer accessibility. Nature Communications, 2020, 11, 5200.	12.8	29
9	Common variants in signaling transcription-factor-binding sites drive phenotypic variability in red blood cell traits. Nature Genetics, 2020, 52, 1333-1345.	21.4	24
10	Dynamic Cardiolipin Synthesis Is Required for CD8+ T Cell Immunity. Cell Metabolism, 2020, 32, 981-995.e7.	16.2	32
11	Lymphocyte-Specific Function of the DNA Polymerase Epsilon Subunit Pole3 Revealed by Neomorphic Alleles. Cell Reports, 2020, 31, 107756.	6.4	12
12	CHD7 and Runx1 interaction provides a braking mechanism for hematopoietic differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23626-23635.	7.1	18
13	Repetitive Elements Trigger RIG-I-like Receptor Signaling that Regulates the Emergence of Hematopoietic Stem and Progenitor Cells. Immunity, 2020, 53, 934-951.e9.	14.3	43
14	Hematopoietic regeneration under the spell of epigenetic-epitranscriptomic factors and transposable elements. Current Opinion in Hematology, 2020, 27, 264-272.	2.5	5
15	Synonymous GATA2 mutations result in selective loss of mutated RNA and are common in patients with GATA2 deficiency. Leukemia, 2020, 34, 2673-2687.	7.2	38
16	Bloody Zebrafish: Novel Methods in Normal and Malignant Hematopoiesis. Frontiers in Cell and Developmental Biology, 2018, 6, 124.	3.7	14
17	A metabolic interplay coordinated by HLX regulates myeloid differentiation and AML through partly overlapping pathways. Nature Communications, 2018, 9, 3090.	12.8	21
18	Protection from UV light is an evolutionarily conserved feature of the haematopoietic niche. Nature, 2018, 558, 445-448.	27.8	59

EIRINI TROMPOUKI

#	Article	IF	CITATIONS
19	Genome-wide Trans-ethnic Meta-analysis Identifies Seven Genetic Loci Influencing Erythrocyte Traits and a Role for RBPMS in Erythropoiesis. American Journal of Human Genetics, 2017, 100, 51-63.	6.2	45
20	From the bedside to the bench: new discoveries on blood cell fate and function. Experimental Hematology, 2017, 47, 24-30.	0.4	0
21	Editorial: Inflammatory Signaling in Bone Marrow Failure and Hematopoietic Malignancy. Frontiers in Immunology, 2017, 8, 660.	4.8	5
22	Stress and Non-Stress Roles of Inflammatory Signals during HSC Emergence and Maintenance. Frontiers in Immunology, 2016, 7, 487.	4.8	41
23	Med12 is an essential regulator of enhancer dynamics in hematopoietic stem cells. Experimental Hematology, 2016, 44, S57.	0.4	0
24	MED12 Regulates HSC-Specific Enhancers Independently of Mediator Kinase Activity to Control Hematopoiesis. Cell Stem Cell, 2016, 19, 784-799.	11.1	88
25	Dynamic Control of Enhancer Repertoires Drives Lineage and Stage-Specific Transcription during Hematopoiesis. Developmental Cell, 2016, 36, 9-23.	7.0	204
26	Fish provide ID(H)eas on targeting leukemia. Blood, 2015, 125, 2880-2882.	1.4	1
27	Angiopoietin-like proteins stimulate HSPC development through interaction with notch receptor signaling. ELife, 2015, 4, .	6.0	30
28	Nanog-like Regulates Endoderm Formation through the Mxtx2-Nodal Pathway. Developmental Cell, 2012, 22, 625-638.	7.0	95
29	Linking hematopoietic regeneration to developmental signaling pathways. Cell Cycle, 2012, 11, 424-425.	2.6	7
30	Zebrafish globin switching occurs in two developmental stages and is controlled by the LCR. Developmental Biology, 2012, 366, 185-194.	2.0	122
31	Chromatin Immunoprecipitation in Adult Zebrafish Red Cells. Methods in Cell Biology, 2011, 104, 341-352.	1.1	10
32	Lineage Regulators Direct BMP and Wnt Pathways to Cell-Specific Programs during Differentiation and Regeneration. Cell, 2011, 147, 577-589.	28.9	277
33	Lineage Regulators Direct BMP and Wnt Pathways to Cell-Specific Programs During Differentiation and Regeneration,. Blood, 2011, 118, 3387-3387.	1.4	0
34	Thymocyte-Specific Truncation of the Deubiquitinating Domain of CYLD Impairs Positive Selection in a NF-κB Essential Modulator-Dependent Manner. Journal of Immunology, 2010, 185, 2032-2043.	0.8	25
35	Small Molecule Screen in Zebrafish and HSC Expansion. Methods in Molecular Biology, 2010, 636, 301-316.	0.9	17
36	BMP and WNT-Directed Transcription Factors TCF7L2/TCF4 and SMAD1 Bind to Distinct Hematopoietic-Specific Target Genes Depending on Cell Lineage. Blood, 2010, 116, 3870-3870.	1.4	0

#	Article	IF	CITATIONS
37	Truncation of the Catalytic Domain of the Cylindromatosis Tumor Suppressor Impairs Lung Maturation. Neoplasia, 2009, 11, 469-476.	5.3	47
38	NF-κB Is Essential for Induction of CYLD, the Negative Regulator of NF-κB. Journal of Biological Chemistry, 2004, 279, 36171-36174.	3.4	163
39	CYLD is a deubiquitinating enzyme that negatively regulates NF-κB activation by TNFR family members. Nature, 2003, 424, 793-796.	27.8	889